RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, Issue 1(30), Pages 150–158 (Mi vsgtu1141)  

This article is cited in 8 scientific papers (total in 8 papers)

Procedings of the 3nd International Conference "Mathematical Physics and its Applications"
Equations of Mathematical Physics

On the problem with generalized operators of fractional differentiation for mixed type equation with two degeneracy lines

O. A. Repinab, S. K. Kumykovac

a Samara State Technical University, Samara, 443100, Russia
b Samara State University of Economics, Samara, 443090, Russia
c Kabardino-Balkar State University, Nalchik, 360004, Russia

Abstract: The nonlocal problem for mixed-type equation with perpendicular lines of degeneracy is investigated for the case when the Dirichlet condition is given on the elliptic boundary, and the generalized derivatives of the solution values on the characteristics are pointwise related to the solution and its normal derivatives values on the lines of a parabolic degeneracy in its hyperbolic parts.

Keywords: nonlocal problem, regular solution, operators of fractional integro-differentiation, Cauchy problem, Fredholm equation, singular integral equation with Cauchy kernel, regularizer, Abel equation

DOI: https://doi.org/10.14498/vsgtu1141

Full text: PDF file (180 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.956.6
MSC: Primary 35M10; Secondary 26A33, 35A05
Original article submitted 22/X/2012
revision submitted – 16/XI/2012

Citation: O. A. Repin, S. K. Kumykova, “On the problem with generalized operators of fractional differentiation for mixed type equation with two degeneracy lines”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013), 150–158

Citation in format AMSBIB
\Bibitem{RepKum13}
\by O.~A.~Repin, S.~K.~Kumykova
\paper On the problem with generalized operators of~fractional differentiation for mixed type equation with two degeneracy lines
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2013
\vol 1(30)
\pages 150--158
\mathnet{http://mi.mathnet.ru/vsgtu1141}
\crossref{https://doi.org/10.14498/vsgtu1141}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1141
  • http://mi.mathnet.ru/eng/vsgtu/v130/p150

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. F. B. Nakhusheva, “Nelokalnaya zadacha dlya nagruzhennogo uravneniya tretego poryadka s kratnymi kharakteristikami”, Sovremennye naukoemkie tekhnologii, 2013, no. 12, 83–86  elib
    2. F. A. Karova, “Zadacha so smescheniem dlya uravneniya tretego poryadka smeshannogo tipa”, Uspekhi sovremennogo estestvoznaniya, 2014, no. 1, 60–62  elib
    3. Z. Kh. Guchaeva, L. Yu. Beslaneeva, “Nelokalnaya zadacha dlya vyrozhdayuschegosya giperbolicheskogo uravneniya s operatoromi drobnogo integro-differentsirovaniya v kraevom uslovii”, Uspekhi sovremennogo estestvoznaniya, 2014, no. 3, 81–86  elib
    4. S. K. Kumykova, R. A. Matueva, “Vnutrennekraevaya zadacha dlya uravneniya smeshannogo tipa vtorogo poryadka”, Uspekhi sovremennogo estestvoznaniya, 2014, no. 3, 91–95  elib
    5. O. A. Repin, S. K. Kumykova, “Zadacha s obobschennymi operatorami drobnogo differentsirovaniya dlya uravneniya Bitsadze–Lykova”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 16:1 (2014), 24–32  mathscinet  elib
    6. S. K. Kumykova, M. A. Shardanova, “Zadacha Bitsadze–Samarskogo dlya uravneniya smeshannogo tipa v neogranichennoi oblasti”, Uspekhi sovremennogo estestvoznaniya, 2015, no. 1-1, 80–83  elib
    7. V. A. Vodakhova, M. R. Yakhutlova, R. G. Tlimakhova, “Nelokalnaya zadacha dlya uravneniya smeshannogo tipa s dvumya perpendikulyarnymi liniyami vyrozhdeniya”, Sovremennye naukoemkie tekhnologii, 2016, no. 2-3, 416–420  elib
    8. S. K. Kumykova, A. G. Ezaova, K. M. Babaeva, “Kraevaya zadacha so smescheniem dlya vyrozhdayuschegosya giperbolicheskogo uravneniya”, Sovremennye naukoemkie tekhnologii, 2016, no. 2-2, 240–245  elib
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:239
    Full text:95
    References:53
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019