RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, Issue 1(30), Pages 31–36 (Mi vsgtu1182)  

This article is cited in 8 scientific papers (total in 8 papers)

Procedings of the 3nd International Conference "Mathematical Physics and its Applications"
Equations of Mathematical Physics

The characteristic problem for the system of the general hyperbolic differential equations of the third order with nonmultiple characteristics

A. A. Andreev, J. O. Yakovleva

Samara State Technical University, Samara, 443100, Russia

Abstract: We consider the well-posed characteristic problem for the system of the general hyperbolic differential equations of the third order with nonmultiple characteristics. The solution of this problem is constructed in an explicit form. The example of the analogue of Goursat problem for a particular system of the hyperbolic differential equations of the third order is given.

Keywords: system of the general hyperbolic differential equations, nonmultiple characteristics, characteristic problem, Hadamard's well-posedness

DOI: https://doi.org/10.14498/vsgtu1182

Full text: PDF file (146 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.956.3
MSC: 35L25
Original article submitted 16/XI/2012
revision submitted – 27/I/2013

Citation: A. A. Andreev, J. O. Yakovleva, “The characteristic problem for the system of the general hyperbolic differential equations of the third order with nonmultiple characteristics”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013), 31–36

Citation in format AMSBIB
\Bibitem{AndYak13}
\by A.~A.~Andreev, J.~O.~Yakovleva
\paper The characteristic problem for the system of the general hyperbolic differential equations
of the third order with nonmultiple characteristics
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2013
\vol 1(30)
\pages 31--36
\mathnet{http://mi.mathnet.ru/vsgtu1182}
\crossref{https://doi.org/10.14498/vsgtu1182}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013VSGTU..30...31A}
\elib{http://elibrary.ru/item.asp?id=19117427}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1182
  • http://mi.mathnet.ru/eng/vsgtu/v130/p31

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. T. K. Yuldashev, “Obratnaya zadacha dlya odnogo integro-differentsialnogo uravneniya Fredgolma v chastnykh proizvodnykh tretego poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(34) (2014), 56–65  mathnet  crossref  zmath  elib
    2. T. K. Yuldashev, “Dvoinaya obratnaya zadacha dlya integro-differentsialnogo uravneniya Fredgolma ellipticheskogo tipa”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2(35) (2014), 39–49  mathnet  crossref  zmath
    3. A. A. Andreev, Yu. O. Yakovleva, “Zadacha Koshi dlya sistemy uravnenii giperbolicheskogo tipa chetvertogo poryadka obschego vida s nekratnymi kharakteristikami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 4(37) (2014), 7–15  mathnet  crossref  zmath  elib
    4. T. K. Yuldashev, “On Fredholm partial integro-differential equation of the third order”, Russian Math. (Iz. VUZ), 59:9 (2015), 62–66  mathnet  crossref
    5. T. K. Yuldashev, “Nelineinoe integro-differentsialnoe uravnenie psevdoparabolicheskogo tipa s nelokalnym integralnym usloviem”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2016, no. 1(32), 11–23  mathnet  crossref
    6. T. K. Yuldashev, “Obratnaya zadacha dlya integro-differentsialnogo uravneniya Fredgolma tretego poryadka s vyrozhdennym yadrom”, Vladikavk. matem. zhurn., 18:2 (2016), 76–85  mathnet
    7. T. K. Yuldashev, “Nelokalnaya kraevaya zadacha dlya neodnorodnogo psevdoparabolicheskogo integro-differentsialnogo uravneniya s vyrozhdennym yadrom”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2017, no. 1(38), 42–54  mathnet  crossref
    8. T. K. Yuldashev, “Mixed problem for pseudoparabolic integro-differential equation with degenerate kernel”, Diff. Equat., 53:1 (2017), 99–108  crossref  crossref  isi  elib  scopus
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:261
    Full text:96
    References:44
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019