RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013, выпуск 1(30), страницы 222–232 (Mi vsgtu1215)  

Труды Третьей Международной конференции «Математическая физика и её приложения»
Механика и классическая теория поля

Инфинитное движение в классической функциональной механике

А. И. Михайловab

a Математический институт им. В. А. Стеклова РАН, г. Москва, 119991, Россия
b Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии, г. Москва, 107140, Россия

Аннотация: В работе исследуется описание инфинитного движения в функциональной формулировке классической механики. На примере простых точно решаемых задач (прохождения через барьер и падения на центр) рассматривается два класса проблем: рассеяние и сингулярность. Вычисляются функционально механические поправки к средним значениям и дисперсиям канонических переменных, обусловленные рассеянием, в частности в простейшем случае прохождения через барьер возникает сдвиг среднего значения координаты на константу, зависящую от параметров барьера, и логарифмическая по времени поправка к дисперсии координаты свободного движения. Также показано, что функционально механический подход приводит к устранению сингулярности в кинетической энергии при падении на центр, эквивалентном решению уравнения Фридмана в космологии.

Ключевые слова: классическая механика, проблема необратимости, уравнение Лиувилля, задачи рассеяния, проблема сингулярности, вселенная Фридмана

Финансовая поддержка Номер гранта
Министерство образования и науки Российской Федерации 2928.2012.1
Работа выполнена при поддержке гранта Президента РФ (проект НШ № 2928.2012.1_м).


DOI: https://doi.org/10.14498/vsgtu1215

Полный текст: PDF файл (193 kB) (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.958
MSC: 82C05
Поступила в редакцию 17/I/2013
в окончательном варианте – 26/II/2013

Образец цитирования: А. И. Михайлов, “Инфинитное движение в классической функциональной механике”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 1(30) (2013), 222–232

Цитирование в формате AMSBIB
\RBibitem{Mik13}
\by А.~И.~Михайлов
\paper Инфинитное движение в~классической функциональной механике
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2013
\vol 1(30)
\pages 222--232
\mathnet{http://mi.mathnet.ru/vsgtu1215}
\crossref{https://doi.org/10.14498/vsgtu1215}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/vsgtu1215
  • http://mi.mathnet.ru/rus/vsgtu/v130/p222

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Просмотров:
    Эта страница:196
    Полный текст:62
    Литература:27
    Первая стр.:1

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019