Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, Issue 3(36), Pages 94–105 (Mi vsgtu1312)  

This article is cited in 3 scientific papers (total in 3 papers)

Mechanics of Solids

The Optimal Location of the Polygonal Internal Supports to the Circular Rigid-Plastic Plates

T. P. Romanova

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation

Abstract: The general solution of a problem of the limit behavior and dynamic bend is obtained for the perfect rigid-plastic circular plates, hinge supported on immobile polygonal contour, located inside the plate. The plate is subjected to short-term dynamic load of explosive type with high intensity, uniformly distributed over the surface. It is shown that there are several mechanisms of limit and dynamic deformation of plates depending on the location of the support contour. The simple analytic expressions are obtained for the limit load and maximum final deflection of plates. The optimal location of support and the number of sides of the polygonal contour are determined, at which the plate has maximum limit load. Numerical examples are given.

Keywords: rigid-plastic plate, circular plate, internal polygonal support, explosive load, limit load, final deflection, optimal location of support

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00102
This work was supported by Russian Foundation for Basic Research (Project No. 14–01–00102–a).


DOI: https://doi.org/10.14498/vsgtu1312

Full text: PDF file (715 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

UDC: 539.37:539.411.5
MSC: 74P99, 74K20, 74C99
Original article submitted 22/IV/2014
revision submitted – 18/V/2014

Citation: T. P. Romanova, “The Optimal Location of the Polygonal Internal Supports to the Circular Rigid-Plastic Plates”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(36) (2014), 94–105

Citation in format AMSBIB
\Bibitem{Rom14}
\by T.~P.~Romanova
\paper The Optimal Location of the Polygonal Internal Supports to the Circular Rigid-Plastic Plates
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2014
\vol 3(36)
\pages 94--105
\mathnet{http://mi.mathnet.ru/vsgtu1312}
\crossref{https://doi.org/10.14498/vsgtu1312}
\zmath{https://zbmath.org/?q=an:06968920}
\elib{https://elibrary.ru/item.asp?id=23085714}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1312
  • http://mi.mathnet.ru/eng/vsgtu/v136/p94

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. T. P. Romanova, “Carrying capacity and optimization of three-layer reinforced concrete annular plate, supported on the internal contour”, PNRPU Mechanics Bulletin, 2015, no. 3, 114–132 (In Russian)  crossref  scopus
    2. T. P. Romanova, “Nesuschaya sposobnost i optimizatsiya trekhsloinykh armirovannykh kruglykh plastin iz raznosoprotivlyayuschikhsya materialov, opertykh po vnutrennemu konturu”, Problemy prochnosti i plastichnosti, 2015, no. 3, 286–300 http://www.unn.ru/e-library/ppp.html?anum=317  elib
    3. T. P. Romanova, “Predelnyi analiz i optimalnoe opiranie trekhsloinykh armirovannykh kruglykh plastin iz raznosoprotivlyayuschikhsya materialov pri neravnomernom nagruzhenii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 20:3 (2016), 508–523  mathnet  crossref  zmath  elib
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:188
    Full text:78
    References:31

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021