RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2015, Volume 19, Number 2, Pages 241–258 (Mi vsgtu1372)  

This article is cited in 6 scientific papers (total in 6 papers)

Differential Equations and Mathematical Physics

Lévy d'Alambertians and their application in the quantum theory

B. O. Volkov

Bauman Moscow State Technical University, Moscow, 105005, Russian Federation

Abstract: The Lévy d'Alambertian is the natural analogue of the well-known Lévy-Laplacian. The aim of the paper is the following. We study the relationship between different definitions of the Lévy d'Alambertian and the relationship between the Lévy d'Alambertian and the QCD equations (the Yang–Mills–Dirac equations). There are two different definitions of the classical Lévy d'Alambertian. One can define the Lévy d'Alambertian as an integral functional given by the second derivative or define it using the Cesaro means of the directional derivatives along the elements of some orthonormal basis. Using the weakly uniformly dense bases we prove the equivalence of these two definitions. We introduce the family of the nonclassical Lévy d'Alambertians using the family of the nonclassical Lévy Laplacians as a model. Any element of this family is associated with the linear operator on the linear span of the orthonormal basis. The classical Lévy d'Alambertian is an element of this family associated with the identity operator. We can describe the connection between the Lévy d'Alambertians and the gauge fields using the classical Lévy d'Alambertian or another nonclassical Lévy d'Alambertian specified in this paper. We study the relationship between this nonclassical Lévy d'Alambertian and the Yang–Mills equations with a source and obtain the system of infinite dimensional differential equations which is equivalent to the QCD equations.

Keywords: Lévy Laplacian, Lévy d'Alambertian, Yang–Mills equations, Yang–Mills–Dirac equations

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 11.G34.31.0054
The research was supported by the Grant of the Government of the Russian Federation for the support of scientific researches of the Government of the Russian Federation in the Federal State Budget Educational Institution of Higher Professional Education “Lomonosov Moscow State University” according to the agreement no. 11.G34.31.0054.


DOI: https://doi.org/10.14498/vsgtu1372

Full text: PDF file (794 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.98
MSC: 81T13
Original article submitted 16/XII/2014
revision submitted – 13/III/2015

Citation: B. O. Volkov, “Lévy d'Alambertians and their application in the quantum theory”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 241–258

Citation in format AMSBIB
\Bibitem{Vol15}
\by B.~O.~Volkov
\paper L\'{e}vy d'Alambertians and their application in the quantum theory
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2015
\vol 19
\issue 2
\pages 241--258
\mathnet{http://mi.mathnet.ru/vsgtu1372}
\crossref{https://doi.org/10.14498/vsgtu1372}
\zmath{https://zbmath.org/?q=an:06968959}
\elib{https://elibrary.ru/item.asp?id=24078300}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1372
  • http://mi.mathnet.ru/eng/vsgtu/v219/i2/p241

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Addendum

    This publication is cited in the following articles:
    1. B. O. Volkov, “Stokhasticheskaya divergentsiya Levi i uravneniya Maksvella”, Matematika i matematicheskoe modelirovanie, 2015, no. 5, 1–16  crossref  elib
    2. B. O. Volkov, “Stokhasticheskie laplasian i dalambertian Levi i uravneniya Maksvella”, Matematika i matematicheskoe modelirovanie, 2015, no. 6, 1–16  crossref  elib
    3. B. O. Volkov, “Laplasian Levi na chetyrekhmernom rimanovom mnogoobrazii”, Matematika i matematicheskoe modelirovanie, 2016, no. 6, 1–14  crossref  elib
    4. B. O. Volkov, “Stochastic Lévy differential operators and Yang-Mills equations”, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 20:2 (2017), 1750008, arXiv: 1605.06024 [math-ph]  crossref  zmath  isi  scopus
    5. B. O. Volkov, “Primenenie differentsialnykh operatorov Levi v teorii kalibrovochnykh polei”, Kvantovaya veroyatnost, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 151, VINITI RAN, M., 2018, 21–36  mathnet  mathscinet
    6. B. O. Volkov, “Lévy differential operators and Gauge invariant equations for Dirac and Higgs fields”, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 22:1 (2019), 1950001, arXiv: 1612.00310 [math-ph]  crossref  isi  scopus
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:527
    Full text:120
    References:68
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020