RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2015, Volume 19, Number 4, Pages 680–696 (Mi vsgtu1382)  

Differential Equations and Mathematical Physics

On a class of vector fields

G. G. Islamov

Udmurt State University, Izhevsk, 426034, Russian Federation

Abstract: It is shown that a simple postulate “The displacement field of the vacuum is a normalized electric field”, is equivalent to three parametric representation of the displacement field of the vacuum:
$$ u(x;t) = P(x) \cos k(x)t + Q(x) \sin k(x)t. $$
Here $t$ — time; $k(x)$ — frequency vibrations at the point of three-dimensional Euclidean space; $P(x), Q(x)$ — a pair of stationary orthonormal vector fields; $(k,P, Q)$ — parameter list of the displacement field. In this case, the normalization factor has dimension $T^{-2}$. The speed of the displacement field
$$ v(x;t) = \frac{\partial u(x;t)}{\partial t} = k(x)(Q(x) \cos k(x)t - P(x) \sin k(x)t). $$
The electric field corresponding to this distribution of the displacement field of vacuum, is given by the formula
$$ E(x;t) = -\frac{\partial v(x;t)}{\partial t} = k^2(x)u(x;t). $$
Moreover, the magnetic induction
$$ B(x;t) = \mathop{\mathrm{rot }} v(x; t). $$
These constructions are used in the determination of local and global solutions of Maxwell's equations describing the dynamics of electromagnetic fields.

Keywords: local and global solutions of Maxwell's equations, spectral problem for rotor operator, the small flow of the displacement field

DOI: https://doi.org/10.14498/vsgtu1382

Full text: PDF file (785 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.958:[535+537.812]
MSC: 78A25, 83C50
Original article submitted 19/XII/2014
revision submitted – 19/II/2015

Citation: G. G. Islamov, “On a class of vector fields”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 680–696

Citation in format AMSBIB
\Bibitem{Isl15}
\by G.~G.~Islamov
\paper On a class of vector fields
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2015
\vol 19
\issue 4
\pages 680--696
\mathnet{http://mi.mathnet.ru/vsgtu1382}
\crossref{https://doi.org/10.14498/vsgtu1382}
\zmath{https://zbmath.org/?q=an:06969187}
\elib{http://elibrary.ru/item.asp?id=25687496}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1382
  • http://mi.mathnet.ru/eng/vsgtu/v219/i4/p680

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:213
    Full text:54
    References:20
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019