RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2015, том 19, номер 1, страницы 44–62 (Mi vsgtu1386)  

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

Дифференциальные уравнения и математическая физика

О решениях эллиптических уравнений с нестепенными нелинейностями в неограниченных областях

Л. М. Кожевникова, А. А. Хаджи

Башкирский государственный университет, Стерлитамакский филиал, г.  Стерлитамак, 453103, Россия

Аннотация: В работе выделен некоторый класс анизотропных эллиптических уравнений второго порядка дивергентного вида с младшими членами с нестепенными нелинейностями
$$\sum\limits_{\alpha=1}^{n}(a_{\alpha}({\boldsymbol x},u,\nabla u))_{x_{\alpha}}-a_0({\boldsymbol x},u,\nabla u)=0.$$
На каратеодориевы функции, входящие в уравнение, накладывается условие совокупной монотонности. Ограничения на рост функций формулируются в терминах специального класса выпуклых функций. Эти требования обеспечивают ограниченность, коэрцитивность, монотонность и семинепрерывность соответствующего эллиптического оператора. Для рассматриваемых уравнений с нестепенными нелинейностями исследованы качественные свойства решений задачи Дирихле в неограниченных областях $\Omega\subset \mathbb{R}_n,\;n\geq 2$. Установлены существование и единственность обобщённых решений в анизотропных пространствах Соболева–Орлича. Кроме того, для произвольных неограниченных областей обобщены теоремы вложения анизотропных пространств Соболева–Орлича. Это позволило доказать глобальную ограниченность решений задачи Дирихле. Использована оригинальная геометрическая характеристика для неограниченных областей, расположенных вдоль выделенной оси. В терминах этой характеристики установлена экспоненциальная оценка скорости убывания на бесконечности решений рассматриваемой задачи с финитными данными.

Ключевые слова: анизотропное эллиптическое уравнение, пространство Соболева–Орлича, нестепенные нелинейности, существование решения, неограниченная область, ограниченность решения, убывание решения

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 13-01-00081-а
Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 13–01–00081-a).

Автор для корреспонденции

DOI: https://doi.org/10.14498/vsgtu1386

Полный текст: PDF файл (853 kB) (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.956.25
MSC: 35J62, 35J25, 35J15
Поступила в редакцию 15/XII/2014
в окончательном варианте – 13/II/2015

Образец цитирования: Л. М. Кожевникова, А. А. Хаджи, “О решениях эллиптических уравнений с нестепенными нелинейностями в неограниченных областях”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 19:1 (2015), 44–62

Цитирование в формате AMSBIB
\RBibitem{KozKha15}
\by Л.~М.~Кожевникова, А.~А.~Хаджи
\paper О~решениях эллиптических уравнений с~нестепенными нелинейностями в~неограниченных областях
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2015
\vol 19
\issue 1
\pages 44--62
\mathnet{http://mi.mathnet.ru/vsgtu1386}
\crossref{https://doi.org/10.14498/vsgtu1386}
\zmath{https://zbmath.org/?q=an:06968947}
\elib{http://elibrary.ru/item.asp?id=23681741}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/vsgtu1386
  • http://mi.mathnet.ru/rus/vsgtu/v219/i1/p44

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Р. Х. Каримов, Л. М. Кожевникова, А. А. Хаджи, “Поведение решений эллиптических уравнений с нестепенными нелинейностями в неограниченных областях”, Уфимск. матем. журн., 8:3 (2016), 99–112  mathnet  mathscinet  elib; R. Kh. Karimov, L. M. Kozhevnikova, A. A. Khadzhi, “Behavior of solutions to elliptic equations with non-power nonlinearities in unbounded domains”, Ufa Math. J., 8:3 (2016), 95–108  crossref  isi
    2. Л. М. Кожевникова, А. А. Никитина, “О скорости убывания на бесконечности решения анизотропного эллиптического уравненияв неограниченных областях”, Актуальные вопросы университетской науки, Сборник научных трудов, Уфа, 2016, 190–200 с.  elib
    3. Л. М. Кожевникова, А. Ш. Камалетдинов, “Существование решений анизотропных эллиптических уравнений с переменными показателями нелинейностей в неограниченных областях”, Вестник ВолГУ. Серия 1. Математика. Физика, 2016, № 5 (36), 29–41  elib
    4. Л. М. Кожевникова, А. Ш. Камалетдинов, “Существование решений анизотропных эллиптических уравнений с переменными показателями нелинейностей в неограниченных областях”, Вестн. Волгогр. гос. ун-та. Сер. 1, Мат. Физ., 2016, № 5(36), 29–41  mathnet  crossref
    5. Л. М. Кожевникова, “Об энтропийном решении эллиптической задачи в анизотропных пространствах Соболева–Орлича”, Ж. вычисл. матем. и матем. физ., 57:3 (2017), 429–447  mathnet  crossref  elib; L. M. Kozhevnikova, “On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces”, Comput. Math. Math. Phys., 57:3 (2017), 434–452  crossref  isi
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Просмотров:
    Эта страница:313
    Полный текст:88
    Литература:34
    Первая стр.:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019