RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2015, том 19, номер 2, страницы 293–310 (Mi vsgtu1390)  

Дифференциальные уравнения и математическая физика

Рассеяние вихрей в абелевых моделях Хиггса на компактных римановых поверхностях

Р. В. Пальвелев

Московский государственный университет им. М. В. Ломоносова, механико-математический факультет, г. Москва, 119899, Россия

Аннотация: Абелевы модели Хиггса на римановых поверхностях являются естественным обобщением абелевой $(2+1)$-мерной модели Хиггса на плоскости, возникающей в теории сверхпроводимости. В модели на плоскости ранее было доказано, что при «медленном» движении двух вихрей (нулей поля Хиггса) после лобового столкновения они испытывают рассеяние под прямым углом, а при симметричном столкновении $N$ вихрей под равными углами происходит рассеяние на угол $\pi/N$. В критическом случае (при значении параметра модели, равном единице) этот результат можно получить с помощью так называемого адиабатического принципа, который утверждает, что динамические решения модели с малой кинетической энергией могут быть приближены геодезическими на пространстве модулей статических решений в метрике, задаваемой кинетической энергией (кинетической метрике). Адиабатический принцип в абелевой $(2+1)$-мерной модели Хиггса в критическом случае был недавно строго обоснован. Хотя явный вид метрики не удается выписать даже в случае двух вихрей, наличие требуемых геодезических удается установить, пользуясь гладкостью метрики в координатах, задаваемых симметрическими функциями положений вихрей, и свойствами симметрии метрики. Локальный аналог этого результата можно доказать, пользуясь только гладкостью кинетической метрики. Это позволяет предположить, что локальный вариант утверждения о рассеянии $N$ вихрей на угол $\pi/N$ при симметричном столкновении переносится на случай моделей на римановых поверхностях. В работе показано, что наличие геодезических кинетической метрики, описывающих требуемое поведение вихрей, в моделях на компактных римановых поверхностях следует из гладкости кинетической метрики в симметрических координатах в окрестности точек столкновения всех вихрей. Указанное свойство гладкости доказано в случае компактных римановых поверхностей. Применив адиабатический принцип для моделей на римановых поверхностях, можно получить утверждение о локальном рассеянии медленно движущихся вихрей в динамических моделях на компактных римановых поверхностях. К сожалению, этот адиабатический принцип еще нуждается в строгом обосновании.

Ключевые слова: рассеяние вихрей, абелева модель Хиггса, римановы поверхности, адиабатический предел, кинетическая метрика

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 13-01-00622-а
Министерство образования и науки Российской Федерации НШ-2900.2014.1
Российская академия наук - Федеральное агентство научных организаций
Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (проект № 13–01–00622-a), Программы Президента Российской Федерации по государственной поддержке ведущих научных школ (грант НШ-2900.2014.1) и Программы Президиума РАН «Фундаментальные проблемы нелинейной динамики в математических и физических науках».


DOI: https://doi.org/10.14498/vsgtu1390

Полный текст: PDF файл (765 kB) (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.958+517.957
MSC: 58J47
Поступила в редакцию 16/XII/2014
в окончательном варианте – 16/III/2015

Образец цитирования: Р. В. Пальвелев, “Рассеяние вихрей в абелевых моделях Хиггса на компактных римановых поверхностях”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 19:2 (2015), 293–310

Цитирование в формате AMSBIB
\RBibitem{Pal15}
\by Р.~В.~Пальвелев
\paper Рассеяние вихрей в~абелевых моделях Хиггса на компактных римановых поверхностях
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2015
\vol 19
\issue 2
\pages 293--310
\mathnet{http://mi.mathnet.ru/vsgtu1390}
\crossref{https://doi.org/10.14498/vsgtu1390}
\zmath{https://zbmath.org/?q=an:06968963}
\elib{http://elibrary.ru/item.asp?id=24078306}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/vsgtu1390
  • http://mi.mathnet.ru/rus/vsgtu/v219/i2/p293

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Просмотров:
    Эта страница:179
    Полный текст:29
    Литература:17

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018