Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2016, Volume 20, Number 1, Pages 109–120 (Mi vsgtu1449)  

Mathematical Modeling, Numerical Methods and Software Complexes

A method for solving problems of heat transfer during the flow of fluids in a plane channel

A. V. Eremin*, I. V. Kudinov, V. V. Zhukov

Samara State Technical University, Samara, 443100, Russian Federation

Abstract: Using the integral method of heat-transfer with the additional boundary conditions we obtain the high precision approximate analytical solution of heat-transfer for a fluid, moving in plate-parallel channel with symmetric boundary conditions of the first kind. Because of the infinite speed of heat propagation described by a parabolic equation of heat-conduction, the temperature in the centre of channel would change immediately after the boundary conditions (of the first kind) application. We receive the approximate analytical solution of boundary value problem using the representation of this temperature in the form of additional required function and introducing the additional boundary conditions to satisfy the original differential equation in boundary points by the desired function. Using of the integral of heat balance we reduce the solving of differential equation in partial derivatives to integration of ordinary differential equation with respect to additional required function, that changes depending on longitudinal variable. We note that fulfillment of the original equation at the boundaries of the area with increasing number of approximations leads to the fulfillment of that equation inside the area. No need to integrate the differential equation on the transverse spatial variable, so we are limited only by the implementation of the integral of heat-transfer (averaged original differential equation), that allows to apply this method to boundary value problems, unsolvable using classic analytical methods.

Keywords: heat conduction in fluid, infinite speed of heat propagation, integral method of thermal balance, approximate analytical solution, additional required function, additional boundary conditions, trigonometric coordinate functions

Funding Agency Grant Number
Russian Foundation for Basic Research 16-38-00059-мол_а
This work was supported by the Russian Foundation for Basic Research (project no. 16–38–00059-mol_a).

* Author to whom correspondence should be addressed

DOI: https://doi.org/10.14498/vsgtu1449

Full text: PDF file (669 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.958:536.24
MSC: 35K05, 80A20
Original article submitted 21/IX/2015
revision submitted – 18/XI/2015

Citation: A. V. Eremin, I. V. Kudinov, V. V. Zhukov, “A method for solving problems of heat transfer during the flow of fluids in a plane channel”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 109–120

Citation in format AMSBIB
\Bibitem{EreKudZhu16}
\by A.~V.~Eremin, I.~V.~Kudinov, V.~V.~Zhukov
\paper A method for solving problems of~heat transfer during the~flow of~fluids in~a plane channel
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2016
\vol 20
\issue 1
\pages 109--120
\mathnet{http://mi.mathnet.ru/vsgtu1449}
\crossref{https://doi.org/10.14498/vsgtu1449}
\zmath{https://zbmath.org/?q=an:06964476}
\elib{https://elibrary.ru/item.asp?id=26898161}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1449
  • http://mi.mathnet.ru/eng/vsgtu/v220/i1/p109

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:250
    Full text:121
    References:27
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021