RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2016, Volume 20, Number 1, Pages 167–194 (Mi vsgtu1456)  

This article is cited in 5 scientific papers (total in 5 papers)

Mathematical Modeling, Numerical Methods and Software Complexes

Mathematical modeling of hereditary elastically deformable body on the basis of structural models and fractional integro-differentiation Riemann–Liouville apparatus

E. N. Ogorodnikov, V. P. Radchenko, L. G. Ungarova

Samara State Technical University, Samara, 443100, Russian Federation

Abstract: The standard one-dimensional generalized model of a viscoelastic body and some of its special cases—Voigt, Maxwell, Kelvin and Zener models are considered. Based on the V. Volterra hypothesis of hereditary elastically deformable solid body and the method of structural modeling the fractional analogues of classical rheological models listed above are introduced. It is shown that if an initial V. Volterra constitutive relation uses the Abel-type kernel, the fractional derivatives arising in constitutive relations will be the Rieman–Liouville derivatives on the interval. It is noted that in many works deal with mathematical models of hereditary elastic bodies, the authors use some fractional derivatives, convenient for the integral transforms, for example, the Riemann–Liouville derivatives on the whole real number line or Caputo derivatives. The explicit solutions of initial value problems for the model fractional differential equations are not given. The correctness of the Cauchy problem is shown for some linear combinations of functions of stress and strain for constitutive relations in differential form with Riemann–Liouville fractional derivatives. Explicit solutions of the problem of creep at constant stress in steps of loading and unloading are found. The continuous dependence of the solutions on the model fractional parameter is proved, in the sense that these solutions transform into a well-known solutions for classical rheological models when $\alpha\to1$. We note the persistence of instantaneous elastic deformation in the loading and unloading process for fractional Maxwell, Kelvin and Zener models. The theorems on the existence and asymptotic properties of the solutions of creep problem are presented and proved. The computer system identifying the parameters of the fractional mathematical model of the viscoelastic body is developed, the accuracy of the approximations for experimental data and visualization solutions of creep problems is evaluated. Test data with constant tensile stresses of polyvinyl chloride tube were used for experimental verification of the proposed models. The results of the calculated data based on the fractional analog of Voigt model are presented. There is a satisfactory agreement between the calculated and experimental data.

Keywords: structural models, rheological models, viscoelasticity, creep, fractional calculus, the operators of Riemann–Liouville fractional integration and differentiation, fractional integral and differential equations, parametric identification, experimental data, Mittag–Leffler type function

DOI: https://doi.org/10.14498/vsgtu1456

Full text: PDF file (944 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 539.313:517.968.72
MSC: Primary 74D10; Secondary 26A33
Original article submitted 05/XI/2015
revision submitted – 19/II/2016

Citation: E. N. Ogorodnikov, V. P. Radchenko, L. G. Ungarova, “Mathematical modeling of hereditary elastically deformable body on the basis of structural models and fractional integro-differentiation Riemann–Liouville apparatus”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 167–194

Citation in format AMSBIB
\Bibitem{OgoRadUng16}
\by E.~N.~Ogorodnikov, V.~P.~Radchenko, L.~G.~Ungarova
\paper Mathematical modeling of hereditary elastically deformable body on the basis
of structural models and fractional integro-differentiation Riemann--Liouville apparatus
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2016
\vol 20
\issue 1
\pages 167--194
\mathnet{http://mi.mathnet.ru/vsgtu1456}
\crossref{https://doi.org/10.14498/vsgtu1456}
\zmath{https://zbmath.org/?q=an:06964480}
\elib{http://elibrary.ru/item.asp?id=26898215}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1456
  • http://mi.mathnet.ru/eng/vsgtu/v220/i1/p167

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. G. Ungarova, “Primenenie lineinykh drobnykh analogov reologicheskikh modelei v zadache approksimatsii eksperimentalnykh dannykh po rastyazheniyu polivinilkhloridnogo plastikata”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 20:4 (2016), 691–706  mathnet  crossref  zmath  elib
    2. Jaroslav Sokolovskyy, Maryana Levkovych, Olha Mokrytska, Volodymyr Kryshtapovych, “Mathematical Modeling of Visco-elastic State of Materials with Fractal Structure”, 14th International conference: the experience of designing and application of cad systems in microelectronics (CADSM), Experience of Designing and Application of CAD Systems in Microelectronics-CADSM, Svalyava, Ukraine, 2017, 35–38  crossref  isi  scopus
    3. E. N. Ogorodnikov, V. P. Radchenko, L. G. Ungarova, “Mathematical models of nonlinear viscoelasticity with operators of fractional integro-differentiation”, PNRPU Mechanics Bulletin, 2018, no. 2, 147–161 (In Russian)  crossref  scopus
    4. A. V. Khokhlov, “Analiz svoistv krivykh polzuchesti s proizvolnoi nachalnoi stadiei nagruzheniya, porozhdaemykh lineinoi teoriei nasledstvennosti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:1 (2018), 65–95  mathnet  crossref  zmath  elib
    5. Yaroslav Sokolovskyy, Maryana Levkovych, Olha Mokrytska, Vitalij Atamanyuk, “Mathematical Modeling of Two-Dimensional Deformation-Relaxation Processes in Environments with Fractal Structure”, 2nd IEEE International Conference on Data Stream Mining and Processing (DSMP), Lviv, Ukraine, 2018, 375–380  isi
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:327
    Full text:100
    References:44
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019