RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2016, Volume 20, Number 2, Pages 276–289 (Mi vsgtu1480)  

This article is cited in 1 scientific paper (total in 1 paper)

Differential Equations and Mathematical Physics

A problem with nonlocal integral condition of the second kind for one-dimensional hyperbolic equation

L. S. Pulkinaa, A. E. Savenkovab

a Samara National Research University, Samara, 443086, Russian Federation
b Samara State Technical University, Samara, 443100, Russian Federation

Abstract: In this paper, we consider a problem for a one-dimensional hyperbolic equation with nonlocal integral condition of the second kind. Uniqueness and existence of a generalized solution are proved. In order to prove this statement we suggest a new approach. The main idea of it is that given nonlocal integral condition is equivalent with a different condition, nonlocal as well but this new condition enables us to derive a priori estimates of a required solution in Sobolev space. By means of derived estimates we show that a sequence of approximate solutions constructed by Galerkin procedure is bounded in Sobolev space. This fact implies the existence of weakly convergent subsequence. Finally, we show that the limit of extracted subsequence is the required solution to the problem.

Keywords: hyperbolic equation, nonlocal integral conditions, generalized solution, Sobolev space, Galerkin procedure
Author to whom correspondence should be addressed

DOI: https://doi.org/10.14498/vsgtu1480

Full text: PDF file (858 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.956.3
MSC: 35A01, 35L10, 35A02
Original article submitted 09/III/2016
revision submitted – 22/IV/2016

Citation: L. S. Pulkina, A. E. Savenkova, “A problem with nonlocal integral condition of the second kind for one-dimensional hyperbolic equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:2 (2016), 276–289

Citation in format AMSBIB
\Bibitem{PulSav16}
\by L.~S.~Pulkina, A.~E.~Savenkova
\paper A problem with nonlocal integral condition of the second kind for one-dimensional hyperbolic equation
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2016
\vol 20
\issue 2
\pages 276--289
\mathnet{http://mi.mathnet.ru/vsgtu1480}
\crossref{https://doi.org/10.14498/vsgtu1480}
\zmath{https://zbmath.org/?q=an:06964487}
\elib{https://elibrary.ru/item.asp?id=27126234}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1480
  • http://mi.mathnet.ru/eng/vsgtu/v220/i2/p276

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. K. Urinov, Sh. T. Nishonova, “A Problem with Integral Conditions for an Elliptic-Parabolic Equation”, Math. Notes, 102:1 (2017), 68–80  mathnet  crossref  crossref  mathscinet  isi  elib
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:381
    Full text:193
    References:49
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020