RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2016, том 20, номер 2, страницы 276–289 (Mi vsgtu1480)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Дифференциальные уравнения и математическая физика

Задача с интегральным смещением для одномерного гиперболического уравнения

Л. С. Пулькинаa, А. Е. Савенковаb

a Самарский национальный исследовательский университет имени академика С. П. Королева, г. Самара, 443086, Россия
b Самарский государственный технический университет, г. Самара, 4430100, Россия

Аннотация: Рассмотрена задача с нелокальным интегральным условием второго рода для одномерного гиперболического уравнения в прямоугольной области. Доказаны существование и единственность обобщенного решения задачи. Для доказательства существования и единственности обобщенного решения поставленной задачи предложен новый метод исследования задач с интегральными условиями. Предложенный в работе метод позволил отказаться от некоторых условий на входные данные, обеспечивающих разрешимость поставленной задачи, а именно от требования обратимости оператора, порождаемого нелокальным условием. Суть данного метода состоит в эквивалентной замене заданного нелокального условия другим, также нелокальным, но содержащим в качестве внеинтегрального члена значения выводящей производной неизвестной функции на боковой границе. Установленная эквивалентность условий позволила перейти к задаче, для доказательства однозначной разрешимости которой применен метод компактности, зарекомендовавший себя как эффективный метод исследования разрешимости начально-краевых задач и задач с нелокальными условиями. С помощью метода Галеркина построена последовательность приближенных решений. Для продолжения исследования разрешимости задачи получены априорные оценки решения в пространстве Соболева. С помощью выведенных оценок доказано утверждение о возможности выделить из построенной методом Галеркина последовательности приближенных решений подпоследовательность, которая слабо сходится к решению задачи. В процессе доказательства разрешимости поставленной задачи обнаружилась интересная связь нелокальных интегральных условий с динамическими условиями.

Ключевые слова: задача со смещением, гиперболическое уравнение, нелокальные интегральные условия, обобщенное решение, пространство Соболева, метод Галеркина
Автор для корреспонденции

DOI: https://doi.org/10.14498/vsgtu1480

Полный текст: PDF файл (858 kB) (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.956.3
MSC: 35A01, 35L10, 35A02
Поступила в редакцию 09/III/2016
в окончательном варианте – 22/IV/2016

Образец цитирования: Л. С. Пулькина, А. Е. Савенкова, “Задача с интегральным смещением для одномерного гиперболического уравнения”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 20:2 (2016), 276–289

Цитирование в формате AMSBIB
\RBibitem{PulSav16}
\by Л.~С.~Пулькина, А.~Е.~Савенкова
\paper Задача с~интегральным смещением для одномерного гиперболического уравнения
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2016
\vol 20
\issue 2
\pages 276--289
\mathnet{http://mi.mathnet.ru/vsgtu1480}
\crossref{https://doi.org/10.14498/vsgtu1480}
\zmath{https://zbmath.org/?q=an:06964487}
\elib{https://elibrary.ru/item.asp?id=27126234}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/vsgtu1480
  • http://mi.mathnet.ru/rus/vsgtu/v220/i2/p276

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. А. К. Уринов, Ш. Т. Нишонова, “Задача с интегральными условиями для эллиптико-параболического уравнения”, Матем. заметки, 102:1 (2017), 81–95  mathnet  crossref  mathscinet  elib; A. K. Urinov, Sh. T. Nishonova, “A Problem with Integral Conditions for an Elliptic-Parabolic Equation”, Math. Notes, 102:1 (2017), 68–80  crossref  isi
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Просмотров:
    Эта страница:392
    Полный текст:196
    Литература:51
    Первая стр.:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021