|
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2016, Volume 20, Number 3, Pages 567–577
(Mi vsgtu1483)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Mathematical Modeling, Numerical Methods and Software Complexes
Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border
S. S. Vlasovaa, E. Yu. Prosviryakovb a Kazan National Research Technical University named after A. N. Tupolev, Kazan, 420111, Russian Federation
b Institute of Engineering Science, Urals Branch, Russian Academy of Sciences, Ekaterinburg, 620049, Russian Federation
Abstract:
The exact stationary solution of the boundary-value problem that describes the convective motion of an incompressible viscous fluid in the two-dimensional layer with the square heating of a free surface in Stokes's approach is found. The linearization of the Oberbeck–Boussinesq equations allows one to describe the flow of fluid in extreme points of pressure and temperature. The condition under which the counter-current flows (two counter flows) in the fluid can be observed, is introduced. If the stagnant point in the fluid exists, six non-closed whirlwinds can be observed.
Keywords:
exact solution, Newton–Rikhmann law, thermal convection, Oberbeck–Boussinesq equations, counter-current flow
Author to whom correspondence should be addressed
DOI:
https://doi.org/10.14498/vsgtu1483
Full text:
PDF file (860 kB)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
PDF file
HTML file
Bibliographic databases:
UDC:
532.51
MSC: 76F02, 76F45, 76M45, 76R05, 76U05 Original article submitted 13/III/2016 revision submitted – 25/V/2016
Language:
Citation:
S. S. Vlasova, E. Yu. Prosviryakov, “Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 567–577
Citation in format AMSBIB
\Bibitem{VlaPro16}
\by S.~S.~Vlasova, E.~Yu.~Prosviryakov
\paper Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2016
\vol 20
\issue 3
\pages 567--577
\mathnet{http://mi.mathnet.ru/vsgtu1483}
\crossref{https://doi.org/10.14498/vsgtu1483}
\zmath{https://zbmath.org/?q=an:06964527}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000454026500011}
\elib{https://elibrary.ru/item.asp?id=28282250}
Linking options:
http://mi.mathnet.ru/eng/vsgtu1483 http://mi.mathnet.ru/eng/vsgtu/v220/i3/p567
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. A. Fomin, L. N. Fomina, “On the solution of fluid flow and heat transfer problem in a 2D channel with backward-facing step”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:2 (2017), 362–375
-
V. V. Privalova, E. Yu. Prosviryakov, “Couette-Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid with allowance made for heat recovery”, Vestn. Samar. Gos. Tekhnicheskogo Univ.-Ser. Fiz.-Mat. Nauka, 22:3 (2018), 532–548
-
G. I. Kelbaliev, S. R. Rasulov, “Matematicheskoe modelirovanie protsessov koalestsentsii i drobleniya kapel i puzyrei v izotropnom turbulentnom potoke (obzor)”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 23:3 (2019), 541–581
-
A. A. Domnich, E. S. Baranovskii, M. A. Artemov, “On a mathematical model of non-isothermal creeping flows of a fluid through a given domain”, Vestn. Samar. Gos. Tekhnicheskogo Univ.-Ser. Fiz.-Mat. Nauka, 23:3 (2019), 417–429
|
Number of views: |
This page: | 323 | Full text: | 109 | References: | 34 |
|