Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2016, Volume 20, Number 4, Pages 644–655 (Mi vsgtu1502)  

This article is cited in 2 scientific papers (total in 2 papers)

Differential Equations and Mathematical Physics

An ordinary integro-differential equation with a degenerate kernel and an integral condition

T. K. Yuldashev

M. F. Reshetnev Siberian State Aerospace University, Krasnoyarsk, 660014, Russian Federation

Abstract: We consider the questions of one value solvability of the nonlocal boundary value problem for a nonlinear ordinary integro-differential equation with a degenerate kernel and a reflective argument. The method of the degenerate kernel is developed for the case of considering ordinary integro-differential equation of the first order. After denoting the integro-differential equation is reduced to a system of algebraic equations with complex right-hand side. After some transformation we obtaine the nonlinear functional-integral equation, which one valued solvability is proved by the method of successive approximations combined with the method of compressing mapping. This paper advances the theory of nonlinear integro-differential equations with a degenerate kernel.

Keywords: integro-differential equation, degenerate kernel, reflective argument, integral form condition, one valued solvability.

DOI: https://doi.org/10.14498/vsgtu1502

Full text: PDF file (770 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.968.74
MSC: 34K10, 34K99
Original article submitted 23/VII/2016
revision submitted – 15/X/2016

Citation: T. K. Yuldashev, “An ordinary integro-differential equation with a degenerate kernel and an integral condition”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:4 (2016), 644–655

Citation in format AMSBIB
\Bibitem{Yul16}
\by T.~K.~Yuldashev
\paper An ordinary integro-differential equation with~a~degenerate kernel and an integral condition
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2016
\vol 20
\issue 4
\pages 644--655
\mathnet{http://mi.mathnet.ru/vsgtu1502}
\crossref{https://doi.org/10.14498/vsgtu1502}
\zmath{https://zbmath.org/?q=an:06964661}
\elib{https://elibrary.ru/item.asp?id=28862960}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1502
  • http://mi.mathnet.ru/eng/vsgtu/v220/i4/p644

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. T. K. Yuldashev, “Obobschennaya razreshimost smeshannoi zadachi dlya nelineinogo integro-differentsialnogo uravneniya vysokogo poryadka s vyrozhdennym yadrom”, Izv. IMI UdGU, 50 (2017), 121–132  mathnet  crossref  elib
    2. T. K. Yuldashev, “Spektralnye osobennosti resheniya odnoi kraevoi zadachi dlya integro-differentsialnogo uravneniya Fredgolma vtorogo poryadka s otrazheniem argumenta”, Izv. IMI UdGU, 54 (2019), 122–134  mathnet  crossref  elib
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:526
    Full text:256
    References:53

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021