RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2018, том 22, номер 2, страницы 236–253 (Mi vsgtu1569)  

Дифференциальные уравнения и математическая физика

Построение операторного исчисления Микусинского на основе алгебры свертки обобщенных функций. Решение задач математической физики

И. Л. Коган

Российский государственный аграрный университет – МСХА им. К. А. Тимирязева, г. Москва, 127550, Россия

Аннотация: Дается новое обоснование операторного исчисления Микусинского, целиком основанное на алгебре свертки обобщенных функций $D'_{+}$ и $D'_{-}$, применительно к решению линейных уравнений в частных производных с постоянными коэффициентами в области $(x;t)\in \mathbb R $ $( \mathbb R_{+} )\times \mathbb R_{+} $. Используемый математический аппарат основан на современном состоянии теории обобщенных функций, и одним из основных его отличий от теории Микусинского является то, что получаемые изображения являются аналитическими функциями комплексного переменного. Это позволяет в алгебре $D'_+ (x\in \mathbb R_{+})$ узаконить преобразование Лапласа, а с применением алгебры $D'_{-}$ распространить метод на область отрицательных значений аргумента. На классических примерах уравнений второго порядка гиперболического и параболического типа в случае $x\in \mathbb R$ излагаются вопросы определения фундаментальных решений и задачи Коши, а на отрезке и полупрямой $x\in \mathbb R_+ $ — нестационарные задачи в собственном смысле. Дается вывод общих формул для получения решения задачи Коши, а также схема определения фундаментальных решений операторным методом. При рассмотрении нестационарных задач приводится компактное доказательство теоремы Дюамеля и выведены формулы, позволяющие оптимизировать получение решений, в том числе с разрывными начальными условиями. Для нахождения оригиналов приводятся примеры использования рядов сверточных операторов обобщенных функций. Предложенный подход по сравнению с классическим операционным исчислением, основанным на преобразовании Лапласа, и теорией Микусинского, обладая для обычных функций одинаковыми соотношениями «оригинал-изображение» на положительной полуоси, позволяет рассматривать уравнения, заданные на всей оси, упростить получение и форму представления решений. Приведенные примеры иллюстрируют возможности и дают оценку эффективности использования операторного исчисления.

Ключевые слова: исчисление Микусинского, пространство обобщенных функций, свертка обобщенных функций, алгебра свертки, преобразование Лапласа, интеграл Дюамеля

DOI: https://doi.org/10.14498/vsgtu1569

Полный текст: PDF файл (1019 kB) (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.982.45
MSC: 44A40, 35E20
Получение: 17 октября 2017 г.
Исправление: 11 февраля 2018 г.
Принятие: 12 марта 2018 г.
Публикация онлайн: 28 марта 2018 г.

Образец цитирования: И. Л. Коган, “Построение операторного исчисления Микусинского на основе алгебры свертки обобщенных функций. Решение задач математической физики”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 22:2 (2018), 236–253

Цитирование в формате AMSBIB
\RBibitem{Kog18}
\by И.~Л.~Коган
\paper Построение операторного исчисления Микусинского~на~основе алгебры свертки обобщенных~функций. Решение задач математической~физики
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2018
\vol 22
\issue 2
\pages 236--253
\mathnet{http://mi.mathnet.ru/vsgtu1569}
\crossref{https://doi.org/10.14498/vsgtu1569}
\elib{http://elibrary.ru/item.asp?id=35467729}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/vsgtu1569
  • http://mi.mathnet.ru/rus/vsgtu/v222/i2/p236

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Цикл статей
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Просмотров:
    Эта страница:144
    Полный текст:20
    Литература:10

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018