RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2017, Volume 21, Number 4, Pages 651–664 (Mi vsgtu1574)  

This article is cited in 1 scientific paper (total in 1 paper)

Differential Equations and Mathematical Physics

A boundary value problem for a third order hyperbolic equation with degeneration of order inside the domain

R. Kh. Makaova

Institute of Applied Mathematics and Automation of Kabardin-Balkar Scientific Centre of RAS, Nal’chik, 360000, Russian Federation

Abstract: In this paper we study the boundary value problem for a degenerating third order equation of hyperbolic type in a mixed domain. The equation under consideration in the positive part of the domain coincides with the Hallaire equation, which is a pseudoparabolic type equation. Moreover, in the negative part of the domain it coincides with a degenerating hyperbolic equation of the first kind, the particular case of the Bitsadze–Lykov equation. The existence and uniqueness theorem for the solution is proved. The uniqueness of the solution to the problem is proved with the Tricomi method. Using the functional relationships of the positive and negative parts of the domain on the degeneration line, we arrive at the convolution type Volterra integral equation of the 2nd kind with respect to the desired solution by a derivative trace. With the Laplace transform method, we obtain the solution of the integral equation in its explicit form. At last, the solution to the problem under study is written out explicitly as the solution of the second boundary-value problem in the positive part of the domain for the Hallaire equation and as the solution to the Cauchy problem in the negative part of the domain for a degenerate hyperbolic equation of the first kind.

Keywords: boundary-value problem, third order hyperbolic equation, Hallaire equation

DOI: https://doi.org/10.14498/vsgtu1574

Full text: PDF file (685 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.956.326
MSC: 35L25, 35L80
Received: October 27, 2017
Revised: December 11, 2017
Accepted: December 18, 2017
First online: December 28, 2017

Citation: R. Kh. Makaova, “A boundary value problem for a third order hyperbolic equation with degeneration of order inside the domain”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017), 651–664

Citation in format AMSBIB
\Bibitem{Mak17}
\by R.~Kh.~Makaova
\paper A boundary value problem for a third order hyperbolic equation with degeneration of order inside the domain
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2017
\vol 21
\issue 4
\pages 651--664
\mathnet{http://mi.mathnet.ru/vsgtu1574}
\crossref{https://doi.org/10.14498/vsgtu1574}
\zmath{https://zbmath.org/?q=an:06964880}
\elib{http://elibrary.ru/item.asp?id=32712830}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1574
  • http://mi.mathnet.ru/eng/vsgtu/v221/i4/p651

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. Kh. Makaova, “Zadacha Trikomi dlya vyrozhdayuschegosya vnutri oblasti giperbolicheskogo uravneniya tretego poryadka”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2018, no. 3(23), 67–75  mathnet  crossref  elib
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:201
    Full text:101
    References:35

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019