RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2017, том 21, номер 4, страницы 651–664 (Mi vsgtu1574)  

Дифференциальные уравнения и математическая физика

Краевая задача для гиперболического уравнения третьего порядка с вырождением порядка внутри области

Р. Х. Макаова

Институт прикладной математики и автоматизации – филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр “Кабардино-Балкарский научный центр Российской академии наук”», г. Нальчик, 360000, Россия

Аннотация: Исследуется краевая задача для гиперболического уравнения третьего порядка с вырождением типа внутри смешанной области. Рассматриваемое уравнение в положительной части области совпадет с уравнением Аллера, которое является уравнением псевдопараболического типа. А в отрицательной части области — с вырождающимся гиперболическим уравнением первого рода, частным случаем которого является уравнение Бицадзе–Лыкова. Доказана теорема существования и единственности решения. Единственность решения задачи доказана с помощью метода Трикоми. Из функциональных соотношений, принесенных на линию вырождения порядка из положительной и отрицательной частей области, приходим к уравнению Вольтерра второго рода типа свертки относительно следа производной искомого решения. Путем применения метода интегрального преобразования Лапласа решение интегрального уравнения находится в явном виде. Далее решение исследуемой задачи выписывается в явном виде как решение второй краевой задачи для уравнения Аллера в положительной части области и как решение задачи Коши для вырождающегося гиперболического уравнения первого рода в отрицательной части области.

Ключевые слова: краевая задача, гиперболическое уравнение третьего порядка, уравнение Аллера

DOI: https://doi.org/10.14498/vsgtu1574

Полный текст: PDF файл (685 kB) (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.956.326
MSC: 35L25, 35L80
Получение: 27 октября 2017 г.
Исправление: 11 декабря 2017 г.
Принятие: 18 декабря 2017 г.
Публикация онлайн: 28 декабря 2017 г.

Образец цитирования: Р. Х. Макаова, “Краевая задача для гиперболического уравнения третьего порядка с вырождением порядка внутри области”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 21:4 (2017), 651–664

Цитирование в формате AMSBIB
\RBibitem{Mak17}
\by Р.~Х.~Макаова
\paper Краевая задача для гиперболического уравнения третьего порядка
с~вырождением порядка внутри области
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2017
\vol 21
\issue 4
\pages 651--664
\mathnet{http://mi.mathnet.ru/vsgtu1574}
\crossref{https://doi.org/10.14498/vsgtu1574}
\elib{http://elibrary.ru/item.asp?id=32712830}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/vsgtu1574
  • http://mi.mathnet.ru/rus/vsgtu/v221/i4/p651

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Просмотров:
    Эта страница:100
    Полный текст:38
    Литература:22

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018