RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2018, том 22, номер 3, страницы 447–486 (Mi vsgtu1608)  

Механика деформируемого твердого тела

Диаграмма предельных деформаций при горячей листовой штамповке металлов. Обзор моделей материала, критериев вязкого разрушения и стандартных испытаний

И. Э. Келлерab, Д. С. Петуховba, А. В. Казанцевa, В. Н. Трофимовa

a Пермский национальный исследовательский политехнический университет, г. Пермь, 614990, Россия
b Институт механики сплошных сред УрО РАН, г. Пермь, Россия

Аннотация: Для обоснованного выбора определяющих уравнений материала при математическом моделировании процессов горячей и теплой обработки давлением тонколистовых металлических изделий с большой степенью вытяжки рассматриваются способы теоретического анализа и экспериментального подтверждения условий предельного деформирования материала.
Внимание сконцентрировано на кривой предельного деформирования листового материала на плоскости главных деформаций (одна из которых соответствует растяжению, а вторая может задавать растяжение или сжатие), характеристике локального состояния материала, отвечающей критическому росту локализации деформации. Локализация здесь понимается как локальное утонение листа и соответствует диффузной форме локализации, другие дефекты (полосы сдвига, образование трещин) развиваются из данного предельного состояния либо (образование складок и морщин) не являются локальными и требуют полной постановки задачи.
Данная кривая, определяющая условия реализации того или иного технологического процесса, может быть теоретически предсказана по заданным модели пластического течения и критерию вязкого разрушения материала и начальным несовершенствам. Для этого рассматриваются возможности схемы Марциньяка–Куцзинского (Marciniak–Kuczyński scheme), образец в рамках которой имеет две зоны однородной деформации и допускает аналитическое сведение задачи к системе нескольких обыкновенных дифференциальных уравнений, решаемых численно. Экспериментальный метод предусматривает испытание вдавливанием пуансона со сферическим или цилиндрическим наконечником в образец, вырубленный из листа, который в зависимости от глубины боковых вырезов может обеспечивать растяжение либо сжатие образца в поперечном направлении.
Оба подхода анализируются в работе в качестве инструментов выбора и экспериментальной верификации модели материала и критерия предельного состояния, помогающих решению сложной методической проблемы идентификации математической модели по достаточно нетипичным для механики деформируемого твердого тела экспериментам, сопровождающимся локализацией деформации.
С применением схемы Марциньяка–Куцзинского выполнен анализ ряда критериев текучести анизотропного листового материала, законов упрочнения и моделей повреждаемости, а также критериев предельного состояния на кривую предельного деформирования, для чего был разработан собственный алгоритм. Экспериментальные стандартные схемы испытания по методам Хасека (V. Hasek), Накадзимы (K. Nakajima) и Марциньяка (Z. Marciniak) были реализованы численно в пакете программ LS-DYNA, данные которых для сравнения также были нанесены на плоскость главных деформаций.
Обсуждается возможность интегрирования в схему Марциньяка–Куцзинского для каждой базовой жестко-пластической (склерономной) модели зависимости от температуры, скорости деформации и микроструктуры. Отмечено существенное ограничение теоретической схемы Марциньяка–Куцзинского рамками пропорционального изменения главных деформаций в образце вне и внутри зоны локализации деформации, а также то, что она не приспособлена для определения предельных свойств металлов, деформируемых в условиях деформационного разупрочнения, демонстрируемого алюминиевыми и титановыми сплавами и некоторыми сталями при температурах динамической рекристаллизации. Для более широкого диапазона условий деформирования материала альтернативы упомянутому численному методу предсказания кривой предельного деформирования не выявлено. Отдельным открытым и актуальным вопросом остается описание эволюции анизотропных свойств пластичности и разрушения вследствие анизотропного накопления поврежденности.

Ключевые слова: горячая листовая штамповка, диаграмма предельного деформирования, вязкое разрушение, пластическая анизотропия, модели материала, расчет, стандартные испытания

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 17-48-590310 р_а
Работа поддержана грантом совместного конкурса Российского фонда фундаментальных исследований и правительства Пермского края (проект № 17–48–590310 р_а).


DOI: https://doi.org/10.14498/vsgtu1608

Полный текст: PDF файл (1233 kB) (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы: PDF файл   HTML файл

Тип публикации: Статья
УДК: 539.374, 539.375
MSC: 74C20, 74R20, 74D10, 74C99
Получение: 17 февраля 2018 г.
Исправление: 11 июля 2018 г.
Принятие: 3 сентября 2018 г.
Публикация онлайн: 6 октября 2018 г.

Образец цитирования: И. Э. Келлер, Д. С. Петухов, А. В. Казанцев, В. Н. Трофимов, “Диаграмма предельных деформаций при горячей листовой штамповке металлов. Обзор моделей материала, критериев вязкого разрушения и стандартных испытаний”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 22:3 (2018), 447–486

Цитирование в формате AMSBIB
\RBibitem{KelPetKaz18}
\by И.~Э.~Келлер, Д.~С.~Петухов, А.~В.~Казанцев, В.~Н.~Трофимов
\paper Диаграмма предельных деформаций при горячей листовой штамповке металлов.
Обзор моделей материала, критериев вязкого разрушения и~стандартных испытаний
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2018
\vol 22
\issue 3
\pages 447--486
\mathnet{http://mi.mathnet.ru/vsgtu1608}
\crossref{https://doi.org/10.14498/vsgtu1608}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/vsgtu1608
  • http://mi.mathnet.ru/rus/vsgtu/v222/i3/p447

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Просмотров:
    Эта страница:56
    Полный текст:12
    Литература:7

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018