RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Сотрудники журнала
Правила для авторов
Лицензионный договор
Редакционная политика
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2018, том 22, номер 3, страницы 532–548 (Mi vsgtu1638)  

Математическое моделирование, численные методы и комплексы программ

Couette–Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid, with allowance made for heat recovery

[Точные решения Куэтта–Хименца для описания установившегося ползущего конвективного течения вязкой несжимаемой жидкости с учетом теплообмена]

V. V. Privalovaa, E. Yu. Prosviryakovba

a Institute of Engineering Science, Urals Branch, Russian Academy of Sciences, Ekaterinburg, 620049, Russian Federation
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg, 620002, Russian Federation

Аннотация: Изучается установившееся ползущее конвективное течение вязкой несжимаемой жидкости в тонком бесконечном слое. Исследование течения жидкости основано на использовании класса точных решений для уравнений Обербека–Буссинеска в приближении Стокса. Поле скоростей описывается точным решением Хименца. Поле температуры и поле давление линейно зависят от горизонтальной (продольной) координаты, что соответствует классу точных решений Остроумова–Бириха. Конвективное движение вязкой несжимаемой жидкости индуцировалось касательными напряжениями на верхней проницаемой (пористой) границе и заданием теплового источника на нижней границе. Кроме того, на верхней границе учитывался теплообмен по закону Ньютона–Рихмана. Полученные точные решения описывают противотечения в жидкости, у которых количество застойных точек не превышает трех. Формирование противотечений в жидкости сопровождается отсосом (sucking) и вдувом (injection) жидкости через проницаемую границу. Наличие большего числа застойных точек формирует ячеистую структуру линий тока. Кроме того, поле скоростей, полученное при решении краевой задачи, характеризуется локализацией течения вблизи границ слоя жидкости (пограничный слой). Полученные в статье точные решения могут использоваться для решения нелинейной системы Обербека–Буссинеска. Показано, что при линеаризации системы Обербека–Буссинеска число Грасгофа может принимать большие значения, зависящие от показателя геометрической анизотропии.

Ключевые слова: противотечение, точное решение, приближение Стокса, застойная точка

Финансовая поддержка Номер гранта
Российская академия наук - Федеральное агентство научных организаций АААА-А18-118020790140-5
Работа выполнена в рамках государственного задания ФАНО, тема № АААА-А18-118020790140-5.


DOI: https://doi.org/10.14498/vsgtu1638

Полный текст: PDF файл (933 kB) (публикуется на условиях лицензии Creative Commons Attribution 4.0 International)
Список литературы: PDF файл   HTML файл

Тип публикации: Статья
УДК: 532.51, 517.958:531.3-324
MSC: 76F02, 76F45, 76M45, 76R05, 76U05
Получение: 25 июля 2018 г.
Исправление: 21 августа 2018 г.
Принятие: 3 сентября 2018 г.
Публикация онлайн: 4 октября 2018 г.
Язык публикации: английский

Образец цитирования: V. V. Privalova, E. Yu. Prosviryakov, “Couette–Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid, with allowance made for heat recovery”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 22:3 (2018), 532–548

Цитирование в формате AMSBIB
\RBibitem{PriPro18}
\by V.~V.~Privalova, E.~Yu.~Prosviryakov
\paper Couette--Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid,
with allowance made for heat recovery
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2018
\vol 22
\issue 3
\pages 532--548
\mathnet{http://mi.mathnet.ru/vsgtu1638}
\crossref{https://doi.org/10.14498/vsgtu1638}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/vsgtu1638
  • http://mi.mathnet.ru/rus/vsgtu/v222/i3/p532

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Просмотров:
    Эта страница:46
    Полный текст:13
    Литература:3

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018