RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, Volume 22, Number 4, Pages 774–784 (Mi vsgtu1639)  

Short Communication

On the uniqueness of the solution of the Cauchy problem for the equation of fractional diffusion with Bessel operator

F. G. Khushtova

Institute of Applied Mathematics and Automation, Nal'chik, 360000, Russian Federation

Abstract: In this paper, we consider fractional diffusion equation involving the Bessel operator acting with respect to a spatial variable and the Riemann-Liouville fractional differentiation operator acting with respect to a time variable. When the order of the fractional derivative is unity, and the singularity of the Bessel operator is absent, this equation coincides with the classical heat equation. Earlier, a solution of the Cauchy problem has been considered for the considered equation and a uniqueness theorem has been proved for a class of functions satisfying the analog of the Tikhonov condition.
In this paper, we have constructed an example to show that the exponent (power) at the condition of the uniqueness of the solution to the Cauchy problem cannot be raised under. Its increase leads to a non-uniqueness of the solution. Using the well-known properties of the Wright function, we have obtained estimates for constructed function, which satisfies the homogeneous equation and the zero Cauchy condition.

Keywords: fractional diffusion equation, fractional differentiation operator, Bessel operator, Cauchy problem, solution uniqueness, Tikhonov condition, Wright function

DOI: https://doi.org/10.14498/vsgtu1639

Full text: PDF file (700 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.955, 517.968.7
MSC: 26A33, 35K15, 35R11
Received: August 28, 2018
Revised: October 25, 2018
Accepted: November 12, 2018
First online: November 28, 2018

Citation: F. G. Khushtova, “On the uniqueness of the solution of the Cauchy problem for the equation of fractional diffusion with Bessel operator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:4 (2018), 774–784

Citation in format AMSBIB
\Bibitem{Khu18}
\by F.~G.~Khushtova
\paper On the uniqueness of the solution of the Cauchy problem for the equation of fractional diffusion with Bessel operator
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2018
\vol 22
\issue 4
\pages 774--784
\mathnet{http://mi.mathnet.ru/vsgtu1639}
\crossref{https://doi.org/10.14498/vsgtu1639}
\elib{http://elibrary.ru/item.asp?id=36681038}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1639
  • http://mi.mathnet.ru/eng/vsgtu/v222/i4/p774

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:119
    Full text:52
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019