
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021, Volume 25, Number 1, Pages 67–82
(Mi vsgtu1816)




Mechanics of Solids
Plane stress state of a uniformly piecewise homogeneous plane with a periodic system of semiinfinite interphase cracks
V. N. Hakobyan^{}^{*}, A. H. Grigoryan^{} ^{} National Academy of Sciences of the Republic of Armenia, Yerevan, 0019, Republic of Armenia
Abstract:
The plane stress state of a uniformly piecewisehomogeneous plane obtained by alternately joining two dissimilar strips is considered, which along the lines of joints of dissimilar strips is weakened by a periodic system of two semiinfinite interfacial cracks and is deformed using normal loads applied to the crack banks. The basic cell of the problem in the form of a twocomponent strip is considered and, using the generalized Fourier transform, a governing system of equations for the problem is obtained in the form of one singular integral equation of the second kind for a complex combination of contact stresses in the junction zone of the strips.
As a special case, tending the height of the strips to infinity, the governing equation of the problem for a twocomponent plane of two dissimilar halfplanes with two semiinfinite interfacial cracks is obtained and its exact solution is constructed. The governing equation for the stated problem is also obtained in the form of one singular integral equation of the first kind with respect to normal contact stresses in another particular case, when all strips are made of the same material, i.e. in the case of a homogeneous plane, a weakened periodic system of parallel, two semiinfinite cracks.
In the general case, the behavior of the unknown function at the end points of the integration interval is determined and the solution of the problem by the numericalanalytical method of mechanical quadratures is reduced to solving a system of algebraic equations. Simple formulas are obtained to determine the intensity factors, the Cherepanov–Rice integral and crack opening. A numerical calculation has been performed. Regularities of changes in contact stresses and the Cherepanov–Rice integral at the endpoints of cracks are revealed, depending on the elastic characteristics of heterogeneous strips and the geometric parameters of the problem.
Keywords:
periodic problem, mixed boundary value problem, piecewise homogeneous plane, interface cracks
^{*} Author to whom correspondence should be addressed
DOI:
https://doi.org/10.14498/vsgtu1816
Full text:
PDF file (1016 kB)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
PDF file
HTML file
UDC:
517.958:531133
MSC: 74A45 Received: August 10, 2020 Revised: January 29, 2021 Accepted: February 12, 2021 First online: February 24, 2021
Citation:
V. N. Hakobyan, A. H. Grigoryan, “Plane stress state of a uniformly piecewise homogeneous plane with a periodic system of semiinfinite interphase cracks”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:1 (2021), 67–82
Citation in format AMSBIB
\Bibitem{HakGri21}
\by V.~N.~Hakobyan, A.~H.~Grigoryan
\paper Plane stress state of a uniformly piecewise homogeneous~plane with a periodic system of~semiinfinite~interphase cracks
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2021
\vol 25
\issue 1
\pages 6782
\mathnet{http://mi.mathnet.ru/vsgtu1816}
\crossref{https://doi.org/10.14498/vsgtu1816}
Linking options:
http://mi.mathnet.ru/eng/vsgtu1816 http://mi.mathnet.ru/eng/vsgtu/v225/i1/p67
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles

Number of views: 
This page:  85  Full text:  36  References:  5 
