Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021, Volume 25, Number 2, Pages 241–256 (Mi vsgtu1820)  

Differential Equations and Mathematical Physics

The first boundary value problem in a rectangular domain for a differential equation with the Bessel operator and the Riemann–Liouville partial derivative

F. G. Khushtova

Institute of Applied Mathematics and Automation of Kabardin-Balkar Scientific Centre of RAS, Nal'chik, 360000, Russian Federation

Abstract: The paper is devoted to the first boundary-value problem in a rectangular domain for a differential equation with the singular Bessel operator acting with respect to a spatial variable and the Riemann–Liouville fractional differentiation operator acting with respect to a time variable. An explicit representation of the solution is constructed. The uniqueness of the solution is proved in the class of functions satisfying the Hölder condition with respect to the time variable. When the order of the fractional derivative is equal to unity, and the Bessel operator has no singularity, the studied equation coincides with the heat equation and the obtained results coincide with well-known corresponding classical results.

Keywords: fractional diffusion equation, fractional differentiation operator, Bessel operator, cylindrical function, Mittag–Leffler type function, first boundary-value problem

DOI: https://doi.org/10.14498/vsgtu1820

Full text: PDF file (1007 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.95
MSC: 26A33, 35K20, 35R11
Received: August 18, 2020
Revised: May 18, 2021
Accepted: May 24, 2021
First online: June 30, 2021

Citation: F. G. Khushtova, “The first boundary value problem in a rectangular domain for a differential equation with the Bessel operator and the Riemann–Liouville partial derivative”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:2 (2021), 241–256

Citation in format AMSBIB
\Bibitem{Khu21}
\by F.~G.~Khushtova
\paper The first boundary value problem in a rectangular domain for a differential equation with the Bessel operator and the Riemann--Liouville partial derivative
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2021
\vol 25
\issue 2
\pages 241--256
\mathnet{http://mi.mathnet.ru/vsgtu1820}
\crossref{https://doi.org/10.14498/vsgtu1820}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1820
  • http://mi.mathnet.ru/eng/vsgtu/v225/i2/p241

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:73
    Full text:28
    References:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021