RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, Issue 2(17), Pages 143–151 (Mi vsgtu634)  

This article is cited in 3 scientific papers (total in 3 papers)

Mechanics of Solids

Stability by Lyapunov of solutions in endochronic plasticity theory without fluidity surface in flat tension conditions

V. P. Radchenko, G. A. Pavlova, S. V. Gorbunov

Samara State Technical University

Abstract: The variant of endochronic theory of high-temperature plasticity without fluidity surface for a collapsing material is studied. Stability by Lyapunov of solutions in flat tension conditions is investigated. The limiting surface of steady deformation is constructed. It is shown that transition through this surface correlates with divergence of numerical iterative calculation procedure. Calculation examples are quoted.

Keywords: high-temperature plasticity, damage of material, the endochronic theory, Lyapunov stability of solutions, a limiting surface, divergence of iterative procedure.

DOI: https://doi.org/10.14498/vsgtu634

Full text: PDF file (240 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

UDC: 539.376+539.4+517.9
MSC: 74Cxx, 74G55
Original article submitted 05/VII/2008
revision submitted – 12/X/2008

Citation: V. P. Radchenko, G. A. Pavlova, S. V. Gorbunov, “Stability by Lyapunov of solutions in endochronic plasticity theory without fluidity surface in flat tension conditions”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(17) (2008), 143–151

Citation in format AMSBIB
\Bibitem{RadPavGor08}
\by V.~P.~Radchenko, G.~A.~Pavlova, S.~V.~Gorbunov
\paper Stability by Lyapunov of solutions in endochronic plasticity theory without fluidity surface in flat tension conditions
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2008
\vol 2(17)
\pages 143--151
\mathnet{http://mi.mathnet.ru/vsgtu634}
\crossref{https://doi.org/10.14498/vsgtu634}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu634
  • http://mi.mathnet.ru/eng/vsgtu/v117/p143

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. I. Kadashevich, S. P. Pomytkin, “Description of second-order effects within the framework of endochronic inelasticity for large deformations”, Mechanics of Solids, 45:6 (2010), 865–875  crossref  isi
    2. S. V. Gorbunov, “Eksperimentalnaya proverka odnogo varianta endokhronnoi teorii plastichnosti bez poverkhnosti tekuchesti v usloviyakh ploskogo napryazhennogo sostoyaniya”, Trudy sedmoi Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem (3–6 iyunya 2010 g.). Chast 1, Matematicheskie modeli mekhaniki, prochnosti i nadezhnosti elementov konstruktsii, Matem. modelirovanie i kraev. zadachi, Samarskii gosudarstvennyi tekhnicheskii universitet, Samara, 2010, 120–122  mathnet
    3. S. V. Gorbunov, “Matematicheskaya model vyazkouprugogo razuprochnyayuschegosya materiala s eksponentsialnym yadrom polzuchesti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(26) (2012), 150–156  mathnet  crossref
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:462
    Full text:137
    References:41
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019