RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, Issue 1(22), Pages 53–67 (Mi vsgtu936)  

Procedings of the 2nd International Conference "Mathematical Physics and its Applications"
Mathematical Physics

The estimates of the solution of the Dirichlet problem with boundary function from $L_p$ for a second-order elliptic equation

A. K. Gushchin

Dept. of Mathematical Physics, Steklov Mathematical Institute, Russian Academy of Sciences, Moscow

Abstract: We study the solvability of the Dirichlet problem for a second-order elliptic equation with measurable and bounded coefficients. Assuming that coefficients of equation are Dini-continued on the boundary, it is established that there is the unique solution of the Dirichlet problem with boundary function from $L_p$, $p>1$. We prove the estimate of the analogue of area integral.

Keywords: elliptic equation, Dirichlet problem, functional space

DOI: https://doi.org/10.14498/vsgtu936

Full text: PDF file (644 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.956.2
MSC: Primary 35D05; Secondary 35J25, 35B30, 35R05, 35B45
Original article submitted 20/XII/2010
revision submitted – 27/III/2011

Citation: A. K. Gushchin, “The estimates of the solution of the Dirichlet problem with boundary function from $L_p$ for a second-order elliptic equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011), 53–67

Citation in format AMSBIB
\Bibitem{Gus11}
\by A.~K.~Gushchin
\paper The estimates of the solution of the Dirichlet problem with boundary function from $L_p$ for a~second-order elliptic equation
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2011
\vol 1(22)
\pages 53--67
\mathnet{http://mi.mathnet.ru/vsgtu936}
\crossref{https://doi.org/10.14498/vsgtu936}
\elib{http://elibrary.ru/item.asp?id=16387159}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu936
  • http://mi.mathnet.ru/eng/vsgtu/v122/p53

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:296
    Full text:92
    References:49
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019