RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, Issue 1(26), Pages 31–38 (Mi vsgtu986)  

This article is cited in 6 scientific papers (total in 6 papers)

Differential Equations

On some class of functional-differential equations

V. A. Kyrov

Gorno-Altaisk State University, Gorno-Altaisk, Russia

Abstract: {In this paper we consider special functional-differential equations arising in geometry for the metric functions. We prove a theorem on the form of the metric functions.

Keywords: functional-differential equation, metric function, phenomenologically symmetric geometry, Helmholtz's geometry

DOI: https://doi.org/10.14498/vsgtu986

Full text: PDF file (608 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.965:514.74
MSC: 34K05
Original article submitted 24/III/2011
revision submitted – 12/II/2012

Citation: V. A. Kyrov, “On some class of functional-differential equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(26) (2012), 31–38

Citation in format AMSBIB
\Bibitem{Kyr12}
\by V.~A.~Kyrov
\paper On some class of functional-differential equations
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2012
\vol 1(26)
\pages 31--38
\mathnet{http://mi.mathnet.ru/vsgtu986}
\crossref{https://doi.org/10.14498/vsgtu986}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu986
  • http://mi.mathnet.ru/eng/vsgtu/v126/p31

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Kyrov, “Vlozhenie fenomenologicheski simmetrichnykh geometrii dvukh mnozhestv ranga $(N,2)$ v fenomenologicheski simmetrichnye geometrii dvukh mnozhestv ranga $(N+1,2)$”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 26:3 (2016), 312–323  mathnet  crossref  mathscinet  elib
    2. V. A. Kyrov, “Vlozhenie fenomenologicheski simmetrichnykh geometrii dvukh mnozhestv ranga $(N,M)$ v fenomenologicheski simmetrichnye geometrii dvukh mnozhestv ranga $(N+1,M)$”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:1 (2017), 42–53  mathnet  crossref  elib
    3. V. A. Kyrov, “Reshenie funktsionalnykh uravnenii, svyazannykh so skalyarnym proizvedeniem”, Chelyab. fiz.-matem. zhurn., 2:1 (2017), 30–45  mathnet  mathscinet  elib
    4. V. A. Kyrov, “O nekotorom klasse funktsionalnykh uravnenii”, Matematicheskaya fizika i kompyuternoe modelirovanie, 20:5 (2017), 17–26  mathnet  crossref
    5. R. A. Bogdanova, G. G. Mikhailichenko, “Derivation of an equation of phenomenological symmetry for some three-dimensional geometries”, Russian Math. (Iz. VUZ), 62:9 (2018), 7–16  mathnet  crossref  isi
    6. V. A. Kyrov, “Ob odnom semeistve funktsionalnykh uravnenii”, Vladikavk. matem. zhurn., 20:3 (2018), 69–77  mathnet  crossref
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:227
    Full text:80
    References:18
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019