RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, Issue 3(125), Pages 44–52 (Mi vsgu465)  

Mathematics

On one problem with dynamic nonlocal condition for a hyperbolic equation

A. E. Savenkova

Samara State University, 1, Acad. Pavlov Street, Samara, 443011, Russian Federation

Abstract: In this article, boundary value problem for hyperbolic partial differential equation with nonlocal data in an integral of the second kind form is considered. The emergence of dynamic conditions may be due to the presence of a damping device. Existence and uniqueness of generalized solution is proved in a given cylindrical field. There is some limitation on the input data. The uniqueness of generalized solution is proved by apriori estimates. The existence is proved by Galerkin’s method and embedding theorems.

Keywords: hyperbolic equation, dynamic nonlocal conditions, nonlocal condition of the second kind, integral conditions, generalized solution, Galerkin method, damping device, dynamic boundary conditions.

Full text: PDF file (281 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file
UDC: 517.956
Received: 15.03.2015

Citation: A. E. Savenkova, “On one problem with dynamic nonlocal condition for a hyperbolic equation”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 3(125), 44–52

Citation in format AMSBIB
\Bibitem{Sav15}
\by A.~E.~Savenkova
\paper On one problem with dynamic nonlocal condition for a hyperbolic equation
\jour Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya
\yr 2015
\issue 3(125)
\pages 44--52
\mathnet{http://mi.mathnet.ru/vsgu465}
\elib{http://elibrary.ru/item.asp?id=23480659}


Linking options:
  • http://mi.mathnet.ru/eng/vsgu465
  • http://mi.mathnet.ru/eng/vsgu/y2015/i3/p44

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Самарского государственного университета. Естественнонаучная серия
    Number of views:
    This page:102
    Full text:54
    References:53

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020