RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, Issue 10(132), Pages 91–113 (Mi vsgu486)  

This article is cited in 5 scientific papers (total in 5 papers)

Mechanics

Cases of integrability corresponding to the pendulum motion on the plane

M. V. Shamolin

Institute of Mechanics, Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119192, Russian Federation

Abstract: In this article, we systemize the results on the study of plane-parallel motion equations of fixed rigid body-pendulum which is placed in certain nonconservative force field. In parallel, we consider the problem of a plane-parallel motion of a free rigid body which is also placed in a similar force field. Thus, the non-conservative tracking force operates onto this body. That force forces the value of certain point of a body to be constant for all the time of a motion, which means the existence of nonintegrable servoconstraint in the system. The obtained results are systematized and served in the invariant form. We also show the nontrivial topological and mechanical analogies.

Keywords: rigid body, resisting medium, dynamical system, phase pattern, case of integrability.

Funding Agency Grant Number
Russian Foundation for Basic Research 12-01-00020_а


Full text: PDF file (1136 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Document Type: Article
UDC: 531.01+531.552
Received: 18.09.2015

Citation: M. V. Shamolin, “Cases of integrability corresponding to the pendulum motion on the plane”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 10(132), 91–113

Citation in format AMSBIB
\Bibitem{Sha15}
\by M.~V.~Shamolin
\paper Cases of integrability corresponding to the pendulum motion on the plane
\jour Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya
\yr 2015
\issue 10(132)
\pages 91--113
\mathnet{http://mi.mathnet.ru/vsgu486}
\elib{http://elibrary.ru/item.asp?id=25377157}


Linking options:
  • http://mi.mathnet.ru/eng/vsgu486
  • http://mi.mathnet.ru/eng/vsgu/y2015/i10/p91

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. V. Shamolin, “Sluchai integriruemosti, sootvetstvuyuschie dvizheniyu mayatnika v trekhmernom prostranstve”, Vestn. SamU. Estestvennonauchn. ser., 2016, no. 3-4, 75–97  mathnet  elib
    2. M. V. Shamolin, “Sluchai integriruemosti, sootvetstvuyuschie dvizheniyu mayatnika v chetyrekhmernom prostranstve”, Vestn. SamU. Estestvennonauchn. ser., 2017, no. 1, 41–58  mathnet  elib
    3. M. V. Shamolin, “O dvizhenii mayatnika v mnogomernom prostranstve. Chast 1. Dinamicheskie sistemy”, Vestn. SamU. Estestvennonauchn. ser., 2017, no. 3, 41–64  mathnet  crossref  elib
    4. M. V. Shamolin, “O dvizhenii mayatnika v mnogomernom prostranstve. Chast 2. Nezavisimost polya sil ot tenzora uglovoi skorosti”, Vestn. SamU. Estestvennonauchn. ser., 2017, no. 4, 40–67  mathnet  crossref  elib
    5. M. V. Shamolin, “O dvizhenii mayatnika v mnogomernom prostranstve. Chast 3. Zavisimost polya sil ot tenzora uglovoi skorosti”, Vestn. SamU. Estestvennonauchn. ser., 24:2 (2018), 33–54  mathnet  crossref  elib
  • Вестник Самарского государственного университета. Естественнонаучная серия
    Number of views:
    This page:44
    Full text:18
    References:39

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019