RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 General information Latest issue Archive Impact factor Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Vestn. Tomsk. Gos. Univ. Mat. Mekh.: Year: Volume: Issue: Page: Find

 Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, Number 51, Pages 48–63 (Mi vtgu628)

MATHEMATICS

Calculation of asian options for the Black–Scholes model

A. A. Shishkova

Tomsk State University , Tomsk, Russian Federation

Abstract: The paper deals with one of fundamental problems of financial mathematics, namely, allocation of resources between financial assets to ensure sufficient payments.
When constructing mathematical models of the dynamics of financial indicators, various classes of random processes with discrete and continuous time are used. Therefore, the theory of martingales is a natural and useful mathematical tool in financial mathematics and engineering. In this paper, the Black–Scholes model is considered in continuous time with two financial assets
$$\begin{cases} \qquad \quad B_t=1, & dS_t=\sigma S_tdW_t, &S_0>0, \end{cases}$$
The representation Theorem 1 of square integrable martingales is studied to calculate coefficients of the martingale representation. These coefficients allow further redistribution of the securities portfolio to obtain the greatest profit.
Theorem 1. Let $X=(x_t, F_t)_{0\leqslant t\leqslant T}\in\mathrm{M}_t$ and $W=(W_t, F_t)_{0\leqslant t\leqslant T}$ be a Wiener process with respect to the natural filtration. Assume that a family of $\sigma$-algebras $(F_t)_{0\leqslant t\leqslant T}$ is right continuous. Then there exits a stochastic process $(\alpha(t,\omega), F_t)_{0\leqslant t\leqslant T}$ with $\mathrm{E}\int_0^T\alpha^2(t,\omega)dt<\infty$ such that for all $0\leqslant t\leqslant T$,

\begin{eqnarray} x_t=x_0+\int_0^t\alpha(s,\omega)dW_s,
\langle x, W\rangle_t=\int_0^t\alpha(s,\omega)ds. \end{eqnarray}

Here, $\langle \bullet, \bullet\rangle_t$ is a mutual quadratic characteristic of processes.
The practical result of the research is the solution of the problem of constructing a hedging strategy. The option was used as the main financial instrument.
To construct a hedging strategy in the case of the model under consideration, we apply Theorem 1 to the martingale
$$M_t=\mathrm{E}(\mathrm{f}_T|F_t),$$
where $f_t=(\frac1T\int_0^T S_tdt-K)_+$ is the payment function.
We found a quadratically integrable process $(\alpha_t)_{0\leqslant t\leqslant T}$ adapted with the filtration $(F_t)_{0\leqslant t\leqslant T}$ such that for all $t\in[0, T]$
$$M_t=M_0+\int_0^t\alpha_s dW_s.$$
The strategy $\Pi=(\beta_t,\gamma_t)$ is calculated by the formulas
$$\beta_t=\mathrm{E}f_t+\int_0^t\alpha_sdW_s-\gamma_tS_t, \quad \gamma_t=\alpha_t/\sigma S_t.$$

Keywords: martingale, stochastic integral, financial strategy, wiener process, hedging, option value.

 Funding Agency Grant Number Ministry of Education and Science of the Russian Federation 2.3208.2017/4.6

DOI: https://doi.org/10.17223/19988621/51/5

Full text: PDF file (462 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 519.81, 519.21
MSC: 60H10, 60G44, 60J65

Citation: A. A. Shishkova, “Calculation of asian options for the Black–Scholes model”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 51, 48–63

Citation in format AMSBIB
\Bibitem{Shi18} \by A.~A.~Shishkova \paper Calculation of asian options for the Black--Scholes model \jour Vestn. Tomsk. Gos. Univ. Mat. Mekh. \yr 2018 \issue 51 \pages 48--63 \mathnet{http://mi.mathnet.ru/vtgu628} \crossref{https://doi.org/10.17223/19988621/51/5} \elib{http://elibrary.ru/item.asp?id=32658718} 

• http://mi.mathnet.ru/eng/vtgu628
• http://mi.mathnet.ru/eng/vtgu/y2018/i51/p48

 SHARE:

Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. A. A. Shishkova, “The hedging strategy for Asian option”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2018, no. 56, 29–41
2. “Tezisy dokladov, predstavlennykh na Tretei Mezhdunarodnoi konferentsii po stokhasticheskim metodam”, Teoriya veroyatn. i ee primen., 64:1 (2019), 151–204
•  Number of views: This page: 56 Full text: 26 References: 7