|
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2017, Issue 1, Pages 85–94
(Mi vtpmk125)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Mathematical Modelling, Numerical Methods and Software Systems
On the exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates
Yu. V. Sheretov Tver State University, Tver
Abstract:
Two new exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates are constructed. First solution is common for Euler and Navier-Stokes systems. The second solution satisfies to Navier-Stokes system, but it is not exact solution for Euler equations. Both solutions describe vortex structures in the fluid.
Keywords:
Euler and Navier-Stokes systems, quasi-hydrodynamic equations, cylindrical coordinates, exact solutions.
DOI:
https://doi.org/10.26456/vtpmk125
Full text:
PDF file (329 kB)
References:
PDF file
HTML file
UDC:
517.95, 532.5 Received: 10.01.2017 Revised: 20.02.2017
Citation:
Yu. V. Sheretov, “On the exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2017, no. 1, 85–94
Citation in format AMSBIB
\Bibitem{She17}
\by Yu.~V.~Sheretov
\paper On the exact solutions of stationary quasi-hydrodynamic equations in cylindrical coordinates
\jour Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.]
\yr 2017
\issue 1
\pages 85--94
\mathnet{http://mi.mathnet.ru/vtpmk125}
\crossref{https://doi.org/10.26456/vtpmk125}
\elib{https://elibrary.ru/item.asp?id=28786649}
Linking options:
http://mi.mathnet.ru/eng/vtpmk125 http://mi.mathnet.ru/eng/vtpmk/y2017/i1/p85
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Yu. V. Sheretov, “Ob obschikh tochnykh resheniyakh statsionarnoi sistemy Nave-Stoksa i kvazigidrodinamicheskoi sistemy, ne udovletvoryayuschikh uravneniyam Eilera”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2017, no. 2, 5–15
-
Yu. V. Sheretov, “Ob obschikh tochnykh resheniyakh sistemy Nave-Stoksa i kvazigidrodinamicheskoi sistemy dlya nestatsionarnykh techenii”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2017, no. 3, 13–25
-
Yu. V. Sheretov, “O klassakh tochnykh reshenii kvazigidrodinamicheskoi sistemy”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2020, no. 2, 5–17
|
Number of views: |
This page: | 121 | Full text: | 63 | References: | 16 |
|