RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, Issue 3, Pages 69–74 (Mi vuu128)  

MECHANICS

Generalization of Lagrange's identity and new integrals of motion

A. A. Kilin

Udmurt State University

Abstract: We discuss system of material points in Euclidean space interacting both with each other and with external field. In particular we consider systems of particles whose interacting is described by homogeneous potential of degree of homogeneity $\alpha=-2$. Such systems were first considered by Newton and – more systematically – by Jacobi). For such systems there is an extra hidden symmetry, and corresponding first integral of motion which we call Jacobi integral. This integral was given in different papers starting with Jacobi, but we present in general. Furthermore, we construct a new algebra of integrals including Jacobi integral. A series of generalizations of Lagrange's identity for systems with homogeneous potential of degree of homogeneity $\alpha=-2$ is given. New integrals of motion for these generalizations are found.

Keywords: Lagrange's identity, many-particle system, first integral, integrability, algebra of integrals.

Full text: PDF file (168 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 531.011
MSC: 70F, 37E
Received: 21.11.2008

Citation: A. A. Kilin, “Generalization of Lagrange's identity and new integrals of motion”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 3, 69–74

Citation in format AMSBIB
\Bibitem{Kil08}
\by A.~A.~Kilin
\paper Generalization of Lagrange's identity and new integrals of motion
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2008
\issue 3
\pages 69--74
\mathnet{http://mi.mathnet.ru/vuu128}


Linking options:
  • http://mi.mathnet.ru/eng/vuu128
  • http://mi.mathnet.ru/eng/vuu/y2008/i3/p69

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Number of views:
    This page:224
    Full text:48
    References:20
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018