
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, Issue 1, Pages 32–45
(Mi vuu414)




This article is cited in 2 scientific papers (total in 2 papers)
MATHEMATICS
The equilibrium problem for a Timoshenko plate containing a crack along a thin rigid inclusion
N. P. Lazarev^{ab} ^{a} Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, pr. Lavrent'eva, 15, Novosibirsk, 630090, Russia
^{b} ScientificResearch Institute of Mathematics, NorthEastern Federal
University, ul. Belinskogo, 58, Yakutsk, 677891, Russia
Abstract:
We study the equilibrium problem of a transversely isotropic plate with rigid inclusions. It is assumed that the plate deforms under hypotheses of classical elasticity. The problems are formulated as the minimization of the plate energy functional on the convex and closed subset of the Sobolev space. It is established that, as the geometric parameter (the size) of the volume inclusion tends to zero, the solutions converge to the solution of an equilibrium problem of a plate with a thin rigid inclusion. Also the case of the delamination of an inclusion is investigated when a crack in the plate is located along one of the inclusion edges. In the problem of a plate with a delaminated inclusion the nonlinear condition of nonpenetration is given. This condition takes the form of a Signorinitype inequality and describes the mutual nonpenetration of the crack edges. For the problem with a delaminated inclusion, the equivalence of variational and differential statements is proved provided a sufficiently smooth solution. For each considered variation problem, unique solvability is established.
Keywords:
crack, Timoshenkotype plate, rigid inclusion, energy functional, variational problem, nonpenetration condition.
Full text:
PDF file (273 kB)
References:
PDF file
HTML file
Document Type:
Article
UDC:
539.311
MSC: 74B99 Received: 02.09.2013
Citation:
N. P. Lazarev, “The equilibrium problem for a Timoshenko plate containing a crack along a thin rigid inclusion”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 1, 32–45
Citation in format AMSBIB
\Bibitem{Laz14}
\by N.~P.~Lazarev
\paper The equilibrium problem for a~Timoshenko plate containing a~crack along a~thin rigid inclusion
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2014
\issue 1
\pages 3245
\mathnet{http://mi.mathnet.ru/vuu414}
Linking options:
http://mi.mathnet.ru/eng/vuu414 http://mi.mathnet.ru/eng/vuu/y2014/i1/p32
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:

N. V. Neustroeva, “An equilibrium problem for an elastic plate with an inclined crack on the boundary of a rigid inclusion”, J. Appl. Industr. Math., 9:3 (2015), 402–411

N. P. Lazarev, “Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenkotype plate with crack”, J. Math. Sci., 228:4 (2018), 409–420

Number of views: 
This page:  157  Full text:  48  References:  23 
