RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, Issue 4, Pages 76–83 (Mi vuu452)  

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Quasi-levels of the Hamiltonian for a carbon nanotube

L. E. Morozovaa, Yu. P. Chuburinb

a Izhevsk State Technical University, ul. Studencheskaya, 7, Izhevsk, 426069, Russia
b Physical Technical Institute, Ural Branch of the Russian Academy of Sciences, ul. Kirova, 132, Izhevsk, 426000, Russia

Abstract: In the past two decades, carbon nanotubes have been actively investigated in the physics literature, because of the promising prospects for their use in microelectronics; at the same time, interesting mathematical properties of used Hamiltonians, unfortunately, are often overlooked by mathematicians. In this paper, we carry out the mathematically rigorous investigation of spectral properties of the Hamiltonian $H_\varepsilon=H_0+\varepsilon V$, where the Hamiltonian $H_0$ of an electron in a zigzag carbon nanotube is written in the tight-binding approach, and the operator $\varepsilon V$ (potential) has the form
$$ (\varepsilon V\psi)(n)=\varepsilon {V_1\psi_1(n)\choose V_2\psi_2(n)}\delta_{n0} $$
(here $\varepsilon>0$, $V_1,V_2$ are real numbers, $\delta_{n0}$ is the Kronecker delta). The Hamiltonian $H_\varepsilon$ corresponds to the carbon nanotube with an impurity uniformly distributed over the cross section of the nanotube. This Hamiltonian is the difference operator defined on functions from $(l^2(\Omega))^2$, where $\Omega=\mathbb Z\times\{0,1,\ldots,N-1\}$, $N\geqslant2$, satisfying the periodic boundary conditions. In particular, in this paper we prove that for each subband of the spectrum near one of the boundary points of the subband exactly one quasilevel (i.e. eigenvalue or resonance) exists in the case of small potentials. For quasilevels, the asymptotic formulas of the form
$$ \lambda _l^\pm=\pm|2\cos\frac{\pi l}N+1|\cdot(1+\frac{\varepsilon^2(V_1+V_2)^2}{16\cos\frac{\pi l}N})+O(\varepsilon^3), $$
are obtained, where $l$ is the subband number, $N$ is the number of atoms in the cross section of the nanotube, and $\pm$ is the sign of the $\lambda$. Also, we find the condition when a quasilevel is an eigenvalue.

Keywords: Hamiltonian of a carbon nanotube, eigenvalue, resonance.

Full text: PDF file (216 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 517.958+530.145.6
MSC: 81Q10, 81Q15
Received: 30.10.2014

Citation: L. E. Morozova, Yu. P. Chuburin, “Quasi-levels of the Hamiltonian for a carbon nanotube”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 4, 76–83

Citation in format AMSBIB
\Bibitem{MorChu14}
\by L.~E.~Morozova, Yu.~P.~Chuburin
\paper Quasi-levels of the Hamiltonian for a~carbon nanotube
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2014
\issue 4
\pages 76--83
\mathnet{http://mi.mathnet.ru/vuu452}


Linking options:
  • http://mi.mathnet.ru/eng/vuu452
  • http://mi.mathnet.ru/eng/vuu/y2014/i4/p76

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. E. Morozova, “Rasseyanie elektrona na primesi v uglerodnoi nanotrubke”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 26:2 (2016), 239–244  mathnet  crossref  mathscinet  elib
  • Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Number of views:
    This page:99
    Full text:26
    References:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018