RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2016, Volume 26, Issue 2, Pages 160–168 (Mi vuu527)  

MATHEMATICS

Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle

V. S. Bazhenov, N. V. Latypova

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia

Abstract: The paper considers Birkhoff-type triangle-based interpolation of two-variable function by polynomials of $2k+1$ degree by set of two variables. Similar estimates are automatically transferred to error estimates of related finite element method. The approximation error estimates of derivatives for the given finite elements depend only on the decomposition diameter, and do not depend on triangulation angles. We show that obtained approximation error estimates for a function and its partial derivatives are unimprovable. Unimprovability is understood in a following sense: there exists a function from the given class and there exist absolute positive constants independent of triangulation such that for any nondegenerate triangle estimates from below are valid. In this work, a system of specific functions is offered for interpolation conditions. These functions allow to obtain of corresponding error estimates for definite partial derivatives.

Keywords: error of interpolation, piecewise polynomial function, triangulation, finite element method.

DOI: https://doi.org/10.20537/vm160202

Full text: PDF file (210 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.518
MSC: 41A05
Received: 29.02.2016

Citation: V. S. Bazhenov, N. V. Latypova, “Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:2 (2016), 160–168

Citation in format AMSBIB
\Bibitem{BazLat16}
\by V.~S.~Bazhenov, N.~V.~Latypova
\paper Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2016
\vol 26
\issue 2
\pages 160--168
\mathnet{http://mi.mathnet.ru/vuu527}
\crossref{https://doi.org/10.20537/vm160202}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3522920}
\elib{http://elibrary.ru/item.asp?id=26244775}


Linking options:
  • http://mi.mathnet.ru/eng/vuu527
  • http://mi.mathnet.ru/eng/vuu/v26/i2/p160

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Number of views:
    This page:119
    Full text:48
    References:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020