RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2017, Volume 27, Issue 2, Pages 178–192 (Mi vuu579)  

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

On uniform global attainability of two-dimensional linear systems with locally integrable coefficients

A. A. Kozlov, I. V. Ints

Polotsk State University, ul. Blokhina, 29, Novopolotsk, 211440, Belarus

Abstract: We consider a linear time-varying control system with locally integrable and integrally bounded coefficients
\begin{equation} \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \tag{1} \end{equation}
We construct control of the system $(1)$ as a linear feedback $u=U(t)x$ with measurable and bounded function $U(t)$, $t\geqslant 0$. For the closed-loop system
\begin{equation} \dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \tag{2} \end{equation}
we study a question about the conditions for its uniform global attainability. The last property of the system (2) means existence of a matrix $U(t)$, $t\geqslant 0$, that ensure equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system (2) with fixed $T>0$ and arbitrary $k\in\mathbb N$, $\det H_k>0$. The problem is solved under the assumption of uniform complete controllability of the system (1), corresponding to the closed-loop system (2), i.e. assuming the existence of such $\sigma>0$ and $\gamma>0,$ that for any initial time $t_0\geqslant 0$ and initial condition $x(t_0)=x_0\in \mathbb{R}^n$ of the system (1) on the segment $[t_0,t_0+\sigma]$ there exists a measurable and bounded vector control $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ that transforms a vector of the initial state of the system into zero on that segment. It is proved that in two-dimensional case, i.e. when $n=2,$ the property of uniform complete controllability of the system (1) is a sufficient condition of uniform global attainability of the corresponding system (2).

Keywords: linear control system, uniform complete controllability, uniform global attainability.

Funding Agency Grant Number
National Academy of Sciences of Belarus, Ministry of Education of the Republic of Belarus подпрограмма 1, задание 1.2.01


DOI: https://doi.org/10.20537/vm170203

Full text: PDF file (323 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.926, 517.977
MSC: 34D08, 34H05, 93C15
Received: 30.05.2017

Citation: A. A. Kozlov, I. V. Ints, “On uniform global attainability of two-dimensional linear systems with locally integrable coefficients”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:2 (2017), 178–192

Citation in format AMSBIB
\Bibitem{KozInt17}
\by A.~A.~Kozlov, I.~V.~Ints
\paper On uniform global attainability of two-dimensional linear systems with locally integrable coefficients
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2017
\vol 27
\issue 2
\pages 178--192
\mathnet{http://mi.mathnet.ru/vuu579}
\crossref{https://doi.org/10.20537/vm170203}
\elib{http://elibrary.ru/item.asp?id=29410190}


Linking options:
  • http://mi.mathnet.ru/eng/vuu579
  • http://mi.mathnet.ru/eng/vuu/v27/i2/p178

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Kozlov, “Ob odnoi faktorizatsii kvadratnykh matrits s polozhitelnym opredelitelem”, Tr. In-ta matem., 25:1 (2017), 51–61  mathnet
    2. A. A. Kozlov, A. D. Burak, “Ob upravlenii otdelnymi asimptoticheskimi invariantami dvumernykh lineinykh upravlyaemykh sistem s nablyudatelem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:4 (2018), 445–461  mathnet  crossref  elib
    3. A. A. Kozlov, “Kriterii ravnomernoi globalnoi dostizhimosti lineinykh sistem”, Izv. IMI UdGU, 52 (2018), 47–58  mathnet  crossref  elib
  • Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Number of views:
    This page:135
    Full text:58
    References:30

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020