RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2017, том 27, выпуск 3, страницы 326–343 (Mi vuu592)  

МАТЕМАТИКА

Об определении равномерной полной управляемости

Е. К. Макаровa, С. Н. Поповаbc

a Институт математики НАН Беларуси, 220072, Беларусь, г. Минск, ул. Сурганова, 11
b Институт математики и механики им. Н.Н. Красовского УрО РАН, 620990, Россия, г. Екатеринбург, ул. С. Ковалевской, 16
c Удмуртский государственный университет, 426034, Россия, г. Ижевск, ул. Университетская, 1

Аннотация: Рассматривается линейная управляемая система
\begin{equation} \dot x=A(t)x+B(t)u,\quad t\in\mathbb R,\quad x\in\mathbb R^{n},\quad u\in\mathbb R^{m}, \tag{1} \end{equation}
в предположении непрерывности по $t$ и $s$ матрицы Коши $X(t,s)$ свободной системы $\dot x=A(t)x$. На каждом отрезке $[\tau,\tau+\vartheta]$ фиксированной длины $\vartheta$ задается нормированное пространство $Z_{\tau}$ функций, определенных на этом отрезке. Управление $u$ на отрезке $[\tau,\tau+\vartheta]$ называется допустимым, если $u\in Z_{\tau}$ и существует $\mathcal Q_{\tau}(u):=\int_{\tau}^{\tau+\vartheta}X(\tau,s)B(s)u(s) ds$. Векторное подпространство $U_{\tau}$ пространства $Z_{\tau}$, на котором определен оператор $\mathcal Q_{\tau}$, называется пространством допустимых управлений для системы (1) на отрезке $[\tau,\tau+\vartheta]$. Предложено определение равномерной полной управляемости системы (1) для случая произвольной зависимости пространства допустимых управлений от момента начала процесса управления. Получены прямые и двойственные необходимые и достаточные условия равномерной полной управляемости линейной системы в этой ситуации. Показано, что при должном выборе пространства допустимых управлений полученные условия эквивалентны классическим определениям равномерной полной управляемости.

Ключевые слова: линейные управляемые системы, равномерная полная управляемость.

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 16-01-00346_а
Исследования второго автора выполнены при финансовой поддержке РФФИ (грант 16-01-00346).


DOI: https://doi.org/10.20537/vm170304

Полный текст: PDF файл (356 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.977.1, 517.926
MSC: 93B05, 93C05
Поступила в редакцию: 22.06.2017

Образец цитирования: Е. К. Макаров, С. Н. Попова, “Об определении равномерной полной управляемости”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 27:3 (2017), 326–343

Цитирование в формате AMSBIB
\RBibitem{MakPop17}
\by Е.~К.~Макаров, С.~Н.~Попова
\paper Об определении равномерной полной управляемости
\jour Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки
\yr 2017
\vol 27
\issue 3
\pages 326--343
\mathnet{http://mi.mathnet.ru/vuu592}
\crossref{https://doi.org/10.20537/vm170304}
\elib{http://elibrary.ru/item.asp?id=30267244}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/vuu592
  • http://mi.mathnet.ru/rus/vuu/v27/i3/p326

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Просмотров:
    Эта страница:121
    Полный текст:23
    Литература:14

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019