RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2018, Volume 28, Issue 1, Pages 48–58 (Mi vuu619)  

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Optimization of average time profit for a probability model of the population subject to a craft

L. I. Rodina

Vladimir State University, ul. Gor'kogo, 87, Vladimir, 600000, Russia

Abstract: We consider the model of population subject to a craft, in which sizes of the trade preparations are random variables. In the absence of operation the population development is described by the logistic equation $\dot x = (a-bx) x,$ where coefficients $a $ and $b $ are indicators of growth of population and intraspecific competition respectively, and in time moments $ \tau_k=kd$ some random share of a resource $\omega_k,$ $k=1,2, \ldots,$ is taken from population. We assume that there is a possibility to exert influence on the process of resource gathering so that to stop preparation in the case when its share becomes big enough (more than some value $u_k\in (0,1)$ in the moment $\tau_k$) in order to keep the biggest possible rest of a resource and to increase the size of next gathering. We investigate the problem of an optimum way to control population $ \bar u = (u_1, …, u_k, …)$ at which the extracted resource is constantly renewed and the value of average time profit can be lower estimated by the greatest number whenever possible. It is shown that at insufficient restriction of a share of the extracted resource the value of average time profit can be equaled to zero for all or almost all values of random parameters. We also consider the following problem: let a value $u\in (0,1)$ be given, by which we limit a random share of a resource $ \omega_k, $ extracted from population in time moments $\tau_k,$ $k=1,2, \ldots .$ It is required to find minimum time between neighboring withdrawals, necessary for resource renewal, in order to make it possible to do extractions until the share of the taken resource does not reach the value $u.$

Keywords: model of the population subject to a craft, average time profit, optimal exploitation.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00346_а


DOI: https://doi.org/10.20537/vm180105

Full text: PDF file (267 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 517.935
MSC: 34A60, 37N35, 49J15, 93B03
Received: 10.01.2018

Citation: L. I. Rodina, “Optimization of average time profit for a probability model of the population subject to a craft”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:1 (2018), 48–58

Citation in format AMSBIB
\Bibitem{Rod18}
\by L.~I.~Rodina
\paper Optimization of average time profit for a probability model of the population subject to a craft
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2018
\vol 28
\issue 1
\pages 48--58
\mathnet{http://mi.mathnet.ru/vuu619}
\crossref{https://doi.org/10.20537/vm180105}
\elib{http://elibrary.ru/item.asp?id=32697215}


Linking options:
  • http://mi.mathnet.ru/eng/vuu619
  • http://mi.mathnet.ru/eng/vuu/v28/i1/p48

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. I. Rodina, I. I. Tyuteev, “Ob otsenke srednei vremennoi vygody v veroyatnostnykh ekologo-ekonomicheskikh modelyakh”, Model. i analiz inform. sistem, 25:3 (2018), 257–267  mathnet  crossref
    2. L. I. Rodina, “Svoistva srednei vremennoi vygody v stokhasticheskikh modelyakh sbora vozobnovlyaemogo resursa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:2 (2018), 213–221  mathnet  crossref
  • Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Number of views:
    This page:114
    Full text:42
    References:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019