RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2018, Volume 28, Issue 3, Pages 305–327 (Mi vuu641)  

MATHEMATICS

Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$

V. A. Kyrov, G. G. Mikhailichenko

Gorno-Altaisk State University, ul. Lenkina, 1, Gorno-Altaisk, 649000, Russia

Abstract: In this paper, the method of embedding is used to construct the classification of two-dimensional phenomenologically symmetric geometries of two sets (PS GTS) of rank $(3,2)$ from the previously known additive two-dimensional PS GTS of rank $(2,2)$ defined by a pair of functions $g^1=x+\xi$ and $g^2 = y+\eta$. The essence of this method consists in finding the functions defining the PS GTS of rank $(3,2)$ with respect to the functions $g^1=x+\xi$ and $g^2 = y+\eta$. In solving this problem, we use the fact that the two-dimensional PS GTS of rank $(3,2)$ admit groups of transformations of dimension 4, and the two-dimensional PS GTS of rank $(2,2)$ is of dimension $2$. It follows that the components of the operators of the Lie algebra of the transformation group of the two-dimensional PS GTS of rank $(3,2)$ are solutions of a system of eight linear differential equations of the first order in two variables. Investigating this system of equations, we arrive at possible expressions for systems of operators. Then, from the systems of operators, we select the operators that form Lie algebras. Then, applying the exponential mapping, we recover the actions of the Lie groups from the Lie algebras found. It is precisely these actions that specify the two-dimensional PS GTS of rank $(3,2)$.

Keywords: phenomenologically symmetric geometry of two sets, system of differential equations, Lie algebra, Lie transformation group.

DOI: https://doi.org/10.20537/vm180304

Full text: PDF file (336 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.912, 514.1
MSC: 39A05, 39B05
Received: 07.06.2018

Citation: V. A. Kyrov, G. G. Mikhailichenko, “Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:3 (2018), 305–327

Citation in format AMSBIB
\Bibitem{KyrMik18}
\by V.~A.~Kyrov, G.~G.~Mikhailichenko
\paper Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank~$(3,2)$
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2018
\vol 28
\issue 3
\pages 305--327
\mathnet{http://mi.mathnet.ru/vuu641}
\crossref{https://doi.org/10.20537/vm180304}
\elib{http://elibrary.ru/item.asp?id=35645984}


Linking options:
  • http://mi.mathnet.ru/eng/vuu641
  • http://mi.mathnet.ru/eng/vuu/v28/i3/p305

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Number of views:
    This page:108
    Full text:61
    References:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020