RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2019, Volume 29, Issue 2, Pages 135–152 (Mi vuu672)  

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On the extension of a Rieman–Stieltjes integral

V. Ya. Derr

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia

Abstract: In this paper, the properties of the regular functions and the so-called $\sigma$-continuous functions (i.e., the bounded functions for which the set of discontinuity points is at most countable) are studied. It is shown that the $\sigma$-continuous functions are Riemann–Stieltjes integrable with respect to continuous functions of bounded variation. Helly's limit theorem for such functions is also proved. Moreover, Riemann–Stieltjes integration of $\sigma$-continuous functions with respect to arbitrary functions of bounded variation is considered. To this end, a $(*)$-integral is introduced. This integral consists of two terms: (i) the classical Riemann–Stieltjes integral with respect to the continuous part of a function of bounded variation, and (ii) the sum of the products of an integrand by the jumps of an integrator. In other words, the $(*)$-integral makes it possible to consider a Riemann–Stieltjes integral with a discontinuous function as an integrand or an integrator. The properties of the (*)-integral are studied. In particular, a formula for integration by parts, an inversion of the order of the integration theorem, and all limit theorems necessary in applications, including a limit theorem of Helly's type, are proved.

Keywords: functions of bounded variation, regulated functions, $\sigma$-continuous functions, Rieman–Stieltjes integral, $(*)$-integral.

DOI: https://doi.org/10.20537/vm190201

Full text: PDF file (251 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.518.126
MSC: 26B30, 26A42
Received: 18.03.2019

Citation: V. Ya. Derr, “On the extension of a Rieman–Stieltjes integral”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:2 (2019), 135–152

Citation in format AMSBIB
\Bibitem{Der19}
\by V.~Ya.~Derr
\paper On the extension of a Rieman--Stieltjes integral
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2019
\vol 29
\issue 2
\pages 135--152
\mathnet{http://mi.mathnet.ru/vuu672}
\crossref{https://doi.org/10.20537/vm190201}
\elib{https://elibrary.ru/item.asp?id=39136239}


Linking options:
  • http://mi.mathnet.ru/eng/vuu672
  • http://mi.mathnet.ru/eng/vuu/v29/i2/p135

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Fedorov D.L., Gryzlov A.A., Kinzebulatov D.M., Latypova N.V., Maksimov V.P., Petrov N.N., Popova S.N., Rodionov V.I., Rodina L.I., Smetanin Yu.M., Zaitsev V.A., “Vasilii Yakovlevich Derr. to Anniversary”, Vestn. Udmurt. Univ.-Mat. Mekh. Kompyuternye Nauk., 29:4 (2019), 612–617  crossref  isi
  • Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Number of views:
    This page:177
    Full text:75
    References:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021