  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Archive Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Mathematical Physics and Computer Simulation: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2017, Issue 1(38), Pages 6–12 (Mi vvgum158)  Mathematics

Construction of the solutions of the Monge–Ampere type equation based on $\Phi$-triangulation

V. A. Klyachin, M. I. Kazanin

Abstract: In the article we considered the method of geometric construction of piecewise linear analog solutions discrete form of the equation
$$u_{x_1x_1} u_{x_2x_2} -u_ {x_1x_2}^ 2 = F (u_{x_1}, u_{x_2}) \varphi (x_1, x_2).$$
The idea of the method is based on the approach suggested by A. D. Aleksandrov to prove the existence of a classical solution of the above equation. Note that the geometric analog of the problem being solved in this article is the problem of A. D. Aleksandrov on the existence of a polyhedron with prescribed curvatures of vertices. For piecewise linear convex function we defined curvature mesuare $\mu(p_i)$ of vertex $p_i$ in terms of function $F(\xi_1,\xi_2)$. The solution is defined as piecewise linear convex function with prescribed values $\mu(p_i)=\varphi_i, i=1,...,N$. The relation $\Phi$-triangulations of given set of points $\xi_i,i=1,...,M$ with piecewise linear solutions is obtained. The construction of solution is based on analog of Legendre transformation of kind
$$f(x) = \min_{i = \overline{1,M}} \{ \Psi(\xi_i) + \langle \nabla \Psi (\xi_i) , x - \xi_i \rangle \}.$$
As a corollary we proved the following result.
Theorem 2. Let $T$classical Delaunay triangulation of a set of points ${\eta} _ {1}, ..., {\eta} _ {M} \in \mathbb {R}^2$ with triangles $\Delta_1 ,. .., \Delta_N$ such that $\mu_F (\Delta_i) = \varphi_i, i=1,...,N$. Then there is a piecewise linear function satisfying the equations
$$\mu(p_i)=\varphi_i, i=1,...,N.$$
Morever, the required solution $f (x)$ defined by
$$f(x) = \min_{i = \overline{1,M}} \{ \frac{1}{4}|\eta_i|^2 + \langle \eta_i , x -\frac{1}{2} \eta_i \rangle \}.$$

Keywords: convex polygonal surface, piecewise linear function, triangulation, convex set, Monge–Ampere equation.

DOI: https://doi.org/10.15688/jvolsu1.2017.1.1  Full text: PDF file (360 kB) References: PDF file   HTML file

UDC: 517.957+514.752
BBK: 32.973.26-018.2

Citation: V. A. Klyachin, M. I. Kazanin, “Construction of the solutions of the Monge–Ampere type equation based on $\Phi$-triangulation”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2017, no. 1(38), 6–12 Citation in format AMSBIB
\Bibitem{KlyKaz17} \by V.~A.~Klyachin, M.~I.~Kazanin \paper Construction of the solutions of the Monge--Ampere type equation based on $\Phi$-triangulation \jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica \yr 2017 \issue 1(38) \pages 6--12 \mathnet{http://mi.mathnet.ru/vvgum158} \crossref{https://doi.org/10.15688/jvolsu1.2017.1.1} 

 SHARE:      •   Contact us: math-net2020_04 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2020