RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2017, Issue 1(38), Pages 6–12 (Mi vvgum158)  

Mathematics

Construction of the solutions of the Monge–Ampere type equation based on $\Phi$-triangulation

V. A. Klyachin, M. I. Kazanin

Volgograd State University

Abstract: In the article we considered the method of geometric construction of piecewise linear analog solutions discrete form of the equation
$$ u_{x_1x_1} u_{x_2x_2} -u_ {x_1x_2}^ 2 = F (u_{x_1}, u_{x_2}) \varphi (x_1, x_2). $$
The idea of the method is based on the approach suggested by A. D. Aleksandrov to prove the existence of a classical solution of the above equation. Note that the geometric analog of the problem being solved in this article is the problem of A. D. Aleksandrov on the existence of a polyhedron with prescribed curvatures of vertices. For piecewise linear convex function we defined curvature mesuare $\mu(p_i)$ of vertex $p_i$ in terms of function $F(\xi_1,\xi_2)$. The solution is defined as piecewise linear convex function with prescribed values $\mu(p_i)=\varphi_i, i=1,...,N$. The relation $\Phi$-triangulations of given set of points $\xi_i,i=1,...,M$ with piecewise linear solutions is obtained. The construction of solution is based on analog of Legendre transformation of kind
$$ f(x) = \min_{i = \overline{1,M}} \{ \Psi(\xi_i) + \langle \nabla \Psi (\xi_i) , x - \xi_i \rangle \}. $$
As a corollary we proved the following result.
Theorem 2. Let $ T $classical Delaunay triangulation of a set of points $ {\eta} _ {1}, ..., {\eta} _ {M} \in \mathbb {R}^2 $ with triangles $ \Delta_1 ,. .., \Delta_N $ such that $ \mu_F (\Delta_i) = \varphi_i, i=1,...,N $. Then there is a piecewise linear function satisfying the equations
$$ \mu(p_i)=\varphi_i, i=1,...,N. $$
Morever, the required solution $ f (x) $ defined by
$$ f(x) = \min_{i = \overline{1,M}} \{ \frac{1}{4}|\eta_i|^2 + \langle \eta_i , x -\frac{1}{2} \eta_i \rangle \}. $$


Keywords: convex polygonal surface, piecewise linear function, triangulation, convex set, Monge–Ampere equation.

DOI: https://doi.org/10.15688/jvolsu1.2017.1.1

Full text: PDF file (360 kB)
References: PDF file   HTML file

UDC: 517.957+514.752
BBK: 32.973.26-018.2

Citation: V. A. Klyachin, M. I. Kazanin, “Construction of the solutions of the Monge–Ampere type equation based on $\Phi$-triangulation”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2017, no. 1(38), 6–12

Citation in format AMSBIB
\Bibitem{KlyKaz17}
\by V.~A.~Klyachin, M.~I.~Kazanin
\paper Construction of the solutions of the Monge--Ampere type equation based on $\Phi$-triangulation
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2017
\issue 1(38)
\pages 6--12
\mathnet{http://mi.mathnet.ru/vvgum158}
\crossref{https://doi.org/10.15688/jvolsu1.2017.1.1}


Linking options:
  • http://mi.mathnet.ru/eng/vvgum158
  • http://mi.mathnet.ru/eng/vvgum/y2017/i1/p6

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Mathematical Physics and Computer Simulation Mathematical Physics and Computer Simulation
    Number of views:
    This page:105
    Full text:44
    References:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020