Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2017, Issue 1(38), Pages 13–21 (Mi vvgum159)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

On the structure of the space of linear sistems of differential equations with periodic coeffiients

V. Sh. Roitenberg

Yaroslavl State Technical University

Abstract: We examine linear systems of differential equations
$$ l: \dot {x}_i = \sum_{j=1}^{n} a_{ij}(t) x_j + b_j(t), i=1,\ldots,n $$
with continuous $\omega$-periodic coefficients. The system $l$ induce the autonomous system $l_p: \dot {x}_i = \sum_{i=1}^{n} a_{ij}(s) x_j + b_j(s), \dot s = 1$ on ${\mathbf{R}}^n \times \mathbf{S}^1$, where $\mathbf{S}^1 = \mathbf{R}/\omega \mathbf{Z}$. The system $l_p$ has the unique extension $\overline{l}_p$ on ${\mathbf{RP}}^n \times \mathbf{S}^1$. By trajectories of system $l$ in ${\mathbf{R}}^n \times \mathbf{S}^1$ (${\mathbf{RP}}^n \times \mathbf{S}^1$) we will mean trajectories of system $l_p$ ($\overline{l}_p$). Let us consider linear systems $l$ as elements of Banach space $L S^n_{\omega}$ of continuous $\omega$-periodic functions $(a_{11}, \ldots, a_{nn}, b_1,\ldots,b_n)\colon \mathbf{R} \to \mathbf{R}^{n^2+n}$ with norm $\|l\|:=\max_{i,j}\max_{t}\max {|a_{ij}(t)|,|b_i(t)|}$. The system $l \in L S^n_{\omega}$ is said to be structurally stable in ${\mathbf{R}}^n \times \mathbf{S}^1$ (in ${\mathbf{RP}}^n \times \mathbf{S}^1$) if $l$ has a neighborhood $V$ in $l \in L S^n_{\omega}$ such that for any system $\widetilde{l} \in V$ we may find a homeomorphism $h \colon {\mathbf{R}}^n \times \mathbf{S}^1 \to {\mathbf{R}}^n \times \mathbf{S}^1$ ( $h \colon {\mathbf{RP}}^n \times \mathbf{S}^1 \to {\mathbf{RP}}^n \times \mathbf{S}^1$, $h (\mathbf{R}^n \times \mathbf{S}^1) = \mathbf{R}^n \times \mathbf{S}^1$) which maps oriented trajectories of system $\widetilde{l}$ onto oriented trajectories of system $l$.
Let $\Sigma_0 L S^n_{\omega}$ be the set of systems $l \in L S^n_{\omega}$ whose multiplicators do not belong to the unit circle.
Theorem 1. The set $\Sigma_0 L S^n_{\omega}$ is open and everywhere dense in $L S^n_{\omega}$ . A system $l \in L S^n_{\omega}$ is structurally stable in $\mathbf{R}^n \times \mathbf{S}^1$ if and only if it belong to the set $\Sigma_0 L S^n_{\omega}$.
Let $\Sigma L S^2_{\omega}$ be the set of systems $l \in L S^2_{\omega}$ whose multiplicators are real, distinct and different from $-1$ and $1$. Let $\Sigma^{+}_s$, $\Sigma^{-}_s$, $\Sigma^{+}_{ns}$, $\Sigma^{-}_{ns}$, $\Sigma^{+}_{nu}$ and $\Sigma^{-}_{nu}$ be subsets of $\Sigma L S^2_{\omega}$ consisting of systems $l$ with multiplicators $\mu_1$, $\mu_2$ for which $\mu_1 < 1 < \mu_2$ ( $\mu_2 < -1 < \mu_1$) if $l \in \Sigma^{+}_s$ ($l \in \Sigma^{-}_s$) , $0 < \mu_1 < \mu_2 < 1$ ( $ -1 < \mu_1 < \mu_2 < 0$) if $l \in \Sigma^{+}_{ns}$ ($l \in \Sigma^{-}_{ns}$), $1 < \mu_1 < \mu_2$ ( $\mu_1 < \mu_2 < 1$) if $l \in \Sigma^{+}_{nu}$ ($l \in \Sigma^{-}_{nu}$).
Theorem 2. 1) A system $l \in L S^2_{\omega}$ is structurally stable in $\mathbf{RP}^2 \times \mathbf{S}^1$ if and only if it belong to the set $\Sigma L S^2_{\omega}$. 2) For any system $l \in \Sigma L S^2_{\omega}$ the corresponding system $\overline{l}_p$ in $\mathbf{RP}^2 \times \mathbf{S}^1$ is a Morse–Smale system. 3) The sets $\Sigma^{+}_s$, $\Sigma^{-}_s$, $\Sigma^{+}_{ns}$, $\Sigma^{-}_{ns}$, $\Sigma^{+}_{nu}$ and $\Sigma^{-}_{nu}$ are classes of topological equivalence in $\Sigma L S^2_{\omega}$.
The paper also describes bifurcation manifolds of codimension one in the space $L S^2_{\omega}$.

Keywords: linear periodic systems of differential equations, projective plane, structural stability, bifurcation manifolds, multiplicators.

DOI: https://doi.org/10.15688/jvolsu1.2017.1.2

Full text: PDF file (575 kB)
References: PDF file   HTML file

UDC: 517.925.52+517.926
BBK: 22.161.6

Citation: V. Sh. Roitenberg, “On the structure of the space of linear sistems of differential equations with periodic coeffiients”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2017, no. 1(38), 13–21

Citation in format AMSBIB
\Bibitem{Roi17}
\by V.~Sh.~Roitenberg
\paper On the structure of the space of linear sistems of differential equations with periodic coeffiients
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2017
\issue 1(38)
\pages 13--21
\mathnet{http://mi.mathnet.ru/vvgum159}
\crossref{https://doi.org/10.15688/jvolsu1.2017.1.2}


Linking options:
  • http://mi.mathnet.ru/eng/vvgum159
  • http://mi.mathnet.ru/eng/vvgum/y2017/i1/p13

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. Sh. Roitenberg, “O grubosti otnositelno prostranstva lineinykh differentsialnykh uravnenii s periodicheskimi koeffitsientami”, Matematicheskaya fizika i kompyuternoe modelirovanie, 20:5 (2017), 27–31  mathnet  crossref
  • Mathematical Physics and Computer Simulation Mathematical Physics and Computer Simulation
    Number of views:
    This page:84
    Full text:27
    References:20

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022