RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2015, Volume 7, Issue 1, Pages 20–27 (Mi vyurm206)  

This article is cited in 12 scientific papers (total in 13 papers)

Mathematics

Holomorphic degenerate groups of operators in quasi-Banach spaces

A. V. Keller, J. K. Al-Delfi

South Ural State University

Abstract: Probably, Sobolev type equations, i.e. unsolved with respect to the highest derivative, first appeared in the late nineteenth century. Due to the fact that the interest to the Sobolev type equations recently significantly increased, the need arose for their consideration in quasi-Banach spaces. Specifically, this study aimed at understanding non-classical models of mathematical physics in quasi-Banach spaces.
The theory of holomorphic degenerate groups of operators, developed in Banach spaces and Frechet spaces is transferred to quasi-Banach spaces. Abstract results are illustrated by specific examples.
The article besides the introduction and the references contains three parts. The first part provides the necessary information regarding the theory of relatively $p$-bounded operators in quasi-Banach spaces. The second one represents the construction of the holomorphic group of solving operators. The third part contains the sufficient conditions for pair of operators to generate group of solving operators.

Keywords: degenerate groups of operators; quasi-Banach spaces; Sobolev type equations.

Full text: PDF file (259 kB)
References: PDF file   HTML file

UDC: 517.9
Received: 15.01.2015

Citation: A. V. Keller, J. K. Al-Delfi, “Holomorphic degenerate groups of operators in quasi-Banach spaces”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:1 (2015), 20–27

Citation in format AMSBIB
\Bibitem{KelAl-15}
\by A.~V.~Keller, J.~K.~Al-Delfi
\paper Holomorphic degenerate groups of operators in quasi-Banach spaces
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2015
\vol 7
\issue 1
\pages 20--27
\mathnet{http://mi.mathnet.ru/vyurm206}
\elib{http://elibrary.ru/item.asp?id=22856977}


Linking options:
  • http://mi.mathnet.ru/eng/vyurm206
  • http://mi.mathnet.ru/eng/vyurm/v7/i1/p20

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. A. Sagadeeva, F. L. Khasan, “Ogranichennye resheniya modeli Barenblatta–Zheltova–Kochinoi v kvazisobolevykh prostranstvakh”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:4 (2015), 138–144  mathnet  crossref  elib
    2. M. A. Sagadeeva, F. L. Khasan, “Suschestvovanie invariantnykh podprostranstv i eksponentsialnykh dikhotomii reshenii dinamicheskikh uravnenii sobolevskogo tipa v kvazibanakhovykh prostranstvakh”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 46–53  mathnet  crossref  elib
    3. F. L. Hasan, “Solvability of initial problems for one class of dynamical equations in quasi-Sobolev spaces”, J. Comp. Eng. Math., 2:3 (2015), 34–42  mathnet  crossref  elib
    4. M. A. Sagadeeva, A. S. Rashid, “Existence of solutions in quasi-Banach spaces for evolutionary Sobolev type equations in relatively radial case”, J. Comp. Eng. Math., 2:2 (2015), 71–81  mathnet  crossref  elib
    5. A. V. Keller, A. A. Zamyshlyaeva, M. A. Sagadeeva, “On integration in quasi-Banach spaces of sequences”, J. Comp. Eng. Math., 2:1 (2015), 52–56  mathnet  crossref  zmath  elib
    6. J. K. T. Al-Isawi, “On kernels and images of resolving analytic degenerate semigroups in quasi-Sobolev spaces”, J. Comp. Eng. Math., 3:1 (2016), 10–19  mathnet  crossref  mathscinet  zmath  elib
    7. E. V. Bychkov, Ya. O. Al'-Ani, “A linearized model of vibrations in the DNA molecule in the quasi-Banach spaces”, J. Comp. Eng. Math., 3:1 (2016), 20–26  mathnet  crossref  mathscinet  zmath  elib
    8. G. A. Sviridyuk, N. A. Manakova, “The Barenblatt Zheltov Kochina model with additive white noise in quasi-Sobolev spaces”, J. Comp. Eng. Math., 3:1 (2016), 61–67  mathnet  crossref  mathscinet  zmath  elib
    9. M. A. Sagadeeva, “Mathematical bases of optimal measurements theory in nonstationary case”, J. Comp. Eng. Math., 3:3 (2016), 19–32  mathnet  crossref  mathscinet  elib
    10. M. A. Sagadeeva, “Vyrozhdennye potoki razreshayuschikh operatorov dlya nestatsionarnykh uravnenii sobolevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 9:1 (2017), 22–30  mathnet  crossref  elib
    11. E. M. Buryak, T. K. Plyshevskaya, A. B. Samarov, “Seminaru po uravneniyam sobolevskogo tipa chetvert veka”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:1 (2017), 165–169  mathnet  crossref  elib
    12. F. L. Hasan, “The bounded solutions on a semiaxis for the linearized Hoff equation in quasi-Sobolev spaces”, J. Comp. Eng. Math., 4:1 (2017), 27–37  mathnet  crossref  mathscinet  elib
    13. K. V. Vasyuchkova, N. A. Manakova, G. A. Sviridyuk, “Some mathematical models with a relatively bounded operator and additive “white noise” in spaces of sequences”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:4 (2017), 5–14  mathnet  crossref  elib
  • Number of views:
    This page:179
    Full text:88
    References:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019