RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2014, Volume 6, Issue 3, Pages 14–22 (Mi vyurm28)  

Mathematics

On a nonclassical boundary value problem for the Helmholtz equation

V. V. Karachik

South Ural State University

Abstract: A boundary value problem for the Helmholtz equation in the unit ball, having high-order normal derivatives in the boundary conditions is considered. The theorem of necessary and sufficient solvability conditions of this problem is proved.

Keywords: Helmholtz equation; generalized Neumann problem; eigenvalues; normal derivatives.

Full text: PDF file (259 kB)
References: PDF file   HTML file
UDC: 517.956.223
Received: 21.05.2014

Citation: V. V. Karachik, “On a nonclassical boundary value problem for the Helmholtz equation”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 6:3 (2014), 14–22

Citation in format AMSBIB
\Bibitem{Kar14}
\by V.~V.~Karachik
\paper On a nonclassical boundary value problem for the Helmholtz equation
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2014
\vol 6
\issue 3
\pages 14--22
\mathnet{http://mi.mathnet.ru/vyurm28}


Linking options:
  • http://mi.mathnet.ru/eng/vyurm28
  • http://mi.mathnet.ru/eng/vyurm/v6/i3/p14

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:162
    Full text:53
    References:35

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020