RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 2016, том 8, выпуск 3, страницы 31–51 (Mi vyurm307)  

Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)

Математика

Неклассические уравнения математической физики. Фазовые пространства полулинейных уравнений соболевского типа

Н. А. Манакова, Г. А. Свиридюк

Южно-Уральский государственный университет, г. Челябинск, Российская Федерация

Аннотация: Статья имеет обзорный характер и содержит результаты с описанием морфологии фазовых пространств полулинейных уравнений соболевского типа. В первых трех параграфах приведены конкретные краевые задачи для уравнений и систем уравнений в частных производных соболевского типа, у которых фазовые пространства — простые гладкие банаховы многообразия. В последнем параграфе собраны те математические модели, чьи фазовые пространства лежат на гладких банаховых многообразиях с особенностями. Цель данной статьи — формирование фундамента будущих исследований морфологии фазовых пространств полулинейных уравнений соболевского типа. Кроме того, в статье дается объяснение феномена несуществования решения задачи Коши и феномена неединственности решения задачи Шоуолтера–Сидорова для полулинейных уравнений соболевского типа.

Ключевые слова: уравнения соболевского типа, фазовое пространство, морфология фазового пространства, банаховы многообразия, квазистационарные траектории, задача Шоуолтера–Сидорова, задача Коши, $k$-сборка Уитни.

DOI: https://doi.org/10.14529/mmph160304

Полный текст: PDF файл (554 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.9
Поступила в редакцию: 15.06.2016

Образец цитирования: Н. А. Манакова, Г. А. Свиридюк, “Неклассические уравнения математической физики. Фазовые пространства полулинейных уравнений соболевского типа”, Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 8:3 (2016), 31–51

Цитирование в формате AMSBIB
\RBibitem{ManSvi16}
\by Н.~А.~Манакова, Г.~А.~Свиридюк
\paper Неклассические уравнения математической физики. Фазовые пространства полулинейных уравнений соболевского типа
\jour Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ.
\yr 2016
\vol 8
\issue 3
\pages 31--51
\mathnet{http://mi.mathnet.ru/vyurm307}
\crossref{https://doi.org/10.14529/mmph160304}
\elib{http://elibrary.ru/item.asp?id=26367651}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/vyurm307
  • http://mi.mathnet.ru/rus/vyurm/v8/i3/p31

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. A. A. Zamyshlyaeva, G. A. Sviridyuk, “Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order”, Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 8:4 (2016), 5–16  mathnet  crossref  elib
    2. N. A. Manakova, “On modified method of multistep coordinate descent for optimal control problem for semilinear Sobolev-type model”, J. Comp. Eng. Math., 3:4 (2016), 59–72  mathnet  crossref  mathscinet  elib
    3. P. O. Moskvicheva, “A numerical experiment for the Barenblatt – Zheltov – Kochina equation in a bounded domain”, J. Comp. Eng. Math., 4:2 (2017), 41–48  mathnet  crossref  mathscinet  elib
    4. E. V. Bychkov, K. Yu. Kotlovanov, “Sobolev type equation in $(n, p)$-sectorial case”, J. Comp. Eng. Math., 4:2 (2017), 66–72  mathnet  crossref  mathscinet  elib
    5. O. V. Gavrilova, “Numerical study of a mathematical model of an autocatalytic reaction with diffusion in a tubular reactor”, J. Comp. Eng. Math., 5:3 (2018), 24–37  mathnet  crossref  elib
    6. N. A. Manakova, O. V. Gavrilova, “About nonuniqueness of solutions of the Showalter–Sidorov problem for one mathematical model of nerve impulse spread in membrane”, Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 11:4 (2018), 161–168  mathnet  crossref  elib
  • Просмотров:
    Эта страница:234
    Полный текст:107
    Литература:33

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019