RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2017, Volume 9, Issue 4, Pages 19–26 (Mi vyurm351)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

On the source function recovering in quazilinear parabolic problems with pointwise overdetermination conditions

S. G. Pyatkov, V. V. Rotko

Yugra State University, Khanty-Mansyisk, Russian Federation

Abstract: In the article we examine the question of well-posedness in the Sobolev spaces of the inverse source problem in the case of a quasilinear parabolic system of the second order. These problems arise when describing heat and mass transfer, diffusion, filtration, and in many other fields. The main part of the operator is linear. The unknown functions depending on time occur in the nonlinear right-hand side. In particular, this class of problems includes the coefficient inverse problems on determination of the lower order coefficients in a parabolic equation or a system. The overdetermination conditions are the values of the solution at some collection of points lying inside the spacial domain. The Dirichlet and oblique derivative problems are taken as boundary conditions. The problems are studied in a bounded domain with a smooth boundary. However, the results can be generalized to the case of unbounded domains as well for which the corresponding solvability theorems hold. The conditions ensuring local in time well-posedness of the problem in the Sobolev classes are exposed. The conditions on the data are minimal. The results are sharp. The problem is reduced to an operator equation whose solvability is proven with the use of a priori bounds and the fixed point theorem. The solution possesses all generalized derivatives occurring in the system which belong to the space $L_p$ with $p>n+2$ and some additional necessary smoothness in some neighborhood about the overdetermination points.

Keywords: parabolic equation, inverse problem, heat-and-mass transfer, boundary value problem, source function.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-41-00063_р_урал_а


DOI: https://doi.org/10.14529/mmph170403

Full text: PDF file (306 kB)
References: PDF file   HTML file

UDC: 517.956
Received: 21.09.2017

Citation: S. G. Pyatkov, V. V. Rotko, “On the source function recovering in quazilinear parabolic problems with pointwise overdetermination conditions”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 9:4 (2017), 19–26

Citation in format AMSBIB
\Bibitem{PyaRot17}
\by S.~G.~Pyatkov, V.~V.~Rotko
\paper On the source function recovering in quazilinear parabolic problems with pointwise overdetermination conditions
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2017
\vol 9
\issue 4
\pages 19--26
\mathnet{http://mi.mathnet.ru/vyurm351}
\crossref{https://doi.org/10.14529/mmph170403}
\elib{https://elibrary.ru/item.asp?id=30451059}


Linking options:
  • http://mi.mathnet.ru/eng/vyurm351
  • http://mi.mathnet.ru/eng/vyurm/v9/i4/p19

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. G. Pyatkov, V. V. Rotko, “Obratnye zadachi dlya nekotorykh kvazilineinykh parabolicheskikh sistem s tochechnymi usloviyami pereopredeleniya”, Matem. tr., 22:1 (2019), 178–204  mathnet  crossref
  • Number of views:
    This page:133
    Full text:42
    References:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021