RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 2018, том 10, выпуск 2, страницы 57–67 (Mi vyurm375)  

Механика

Определение выражения изобарического коэффициента объемного расширения для некоторых молекулярных кристаллов нитросоединений

Ю. М. Ковалев

Южно-Уральский государственный университет, г. Челябинск, Российская Федерация

Аннотация: Предложен вид уравнений состояния молекулярных кристаллов нитросоединений, построенный на основании разделения свободной энергии Гельмгольца на внутримолекулярную и межмолекулярную составляющие. Тепловую часть внутренней энергии и давления молекулярного кристалла предлагается аппроксимировать приближением Дебая для межмолекулярной и приближением Эйнштейна для внутримолекулярной составляющей. Данное разделение энергии Гельмгольца позволило получить в явном виде выражения для всех термодинамических величин, входящих в уравнения состояния. Предположение о том, что изотермическая скорость звука молекулярного кристалла при температуре 0 К определяется исключительно упругими характеристиками кристалла, дало возможность получить зависимость коэффициента Грюнайзена от объема. Определенные в работе зависимости термодинамических величин от температуры и объема были использованы для построения аналога уравнения Грюнайзена для молекулярных кристаллов и определения зависимости изобарического коэффициента объемного расширения кристалла от температуры. Оказалось, что для получения расчетных значений объемов элементарных ячеек кристаллов ТАТБ при интегрировании уравнения Грюнайзена по температуре, можно использовать высоко температурное приближение для функции теплоемкости Дебая. Полученная теоретическая зависимость изобарического коэффициента объемного расширения кристалла от температуры указывает на автоматическое выполнение условия стремления его к нулю при стремлении температуры к нулю. Проведение сравнительного анализа расчетных и экспериментальных значений объемов элементарных ячеек молекулярных кристаллов 1,3,5-2,4,6-тринитробензола (ТАТБ) в зависимости от температуры показало их удовлетворительное совпадение с точностью не более 3 %.

Ключевые слова: уравнение состояния, молекулярный кристалл, энергия Гельмгольца, постоянная Планка, постоянная Больцмана, приближение Дебая, приближение Эйнштейна.

DOI: https://doi.org/10.14529/mmph180206

Полный текст: PDF файл (324 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 532.593+536.715
Поступила в редакцию: 08.04.2018

Образец цитирования: Ю. М. Ковалев, “Определение выражения изобарического коэффициента объемного расширения для некоторых молекулярных кристаллов нитросоединений”, Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 10:2 (2018), 57–67

Цитирование в формате AMSBIB
\RBibitem{Kov18}
\by Ю.~М.~Ковалев
\paper Определение выражения изобарического коэффициента объемного расширения для некоторых молекулярных кристаллов нитросоединений
\jour Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ.
\yr 2018
\vol 10
\issue 2
\pages 57--67
\mathnet{http://mi.mathnet.ru/vyurm375}
\crossref{https://doi.org/10.14529/mmph180206}
\elib{http://elibrary.ru/item.asp?id=32855771}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/vyurm375
  • http://mi.mathnet.ru/rus/vyurm/v10/i2/p57

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:95
    Полный текст:34
    Литература:14
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020