
Vestn. YuzhnoUral. Gos. Unta. Ser. Matem. Mekh. Fiz., 2018, Volume 10, Issue 3, Pages 5–11
(Mi vyurm378)




Mathematics
On the generalized boundaryvalue problem for linear Sobolev type equations on the geometric graph
A. A. Bayazitova^{} ^{} South Ural State University, Chelyabinsk, Russian Federation
Abstract:
On the geometric graph, where in addition to the continuity conditions and balance flow, condition of immobility is first introduced into the vertices of the graph, which is converted to a Dirichlet condition when the graph has one edge with two vertices. To solve this problem we first consider the corresponding Sturm–Liouville problem, and the results are then used to solve the Cauchy problem for two linear models, defined on the graph: Hoff equation and Barenblatt–Zheltov–Kochina equation. A feature of the work is the fact that on each edge of the graph given by the equation with different coefficients, which coupled with the introduction of vertices, is fixed for the first time in this problem.
Both models relate to Sobolev type equations, the study of which is experiencing an era of its heyday. Reduction of these equations to an abstract Sobolev type equation makes it possible to apply the method of degenerate semigroups of operators. The phase space of solutions is determined by the phase space method, which consists in reducing the singular equation to a regular equation defined on some subspace of the original space. The obtained results of theorems can be used in consideration of inverse problems, optimal control problems, the initialend and multipoint problems, and also in consideration of stochastic equations for the models set in a geometric graph.
Keywords:
Sobolev type models, equations on graph, phase space method.
DOI:
https://doi.org/10.14529/mmph180301
Full text:
PDF file (227 kB)
References:
PDF file
HTML file
UDC:
517.9 Received: 13.06.2018
Citation:
A. A. Bayazitova, “On the generalized boundaryvalue problem for linear Sobolev type equations on the geometric graph”, Vestn. YuzhnoUral. Gos. Unta. Ser. Matem. Mekh. Fiz., 10:3 (2018), 5–11
Citation in format AMSBIB
\Bibitem{Bay18}
\by A.~A.~Bayazitova
\paper On the generalized boundaryvalue problem for linear Sobolev type equations on the geometric graph
\jour Vestn. YuzhnoUral. Gos. Unta. Ser. Matem. Mekh. Fiz.
\yr 2018
\vol 10
\issue 3
\pages 511
\mathnet{http://mi.mathnet.ru/vyurm378}
\crossref{https://doi.org/10.14529/mmph180301}
\elib{http://elibrary.ru/item.asp?id=35234071}
Linking options:
http://mi.mathnet.ru/eng/vyurm378 http://mi.mathnet.ru/eng/vyurm/v10/i3/p5
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles

Number of views: 
This page:  36  Full text:  12  References:  7 
