RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2013, Volume 5, Issue 1, Pages 107–109 (Mi vyurm57)  

This article is cited in 11 scientific papers (total in 11 papers)

Short communications

Quasi-Sobolev spaces $l_p^m$

Jawad K. Al-Delfiab

a South Ural State University
b Al-Mustansiriyah University, Baghdad, Iraq

Abstract: Firstly, the notion of quasi-Banach spaces for the sequence spaces $l_p^m$, $m\in R$, $p\in(0,+\infty)$ has been considered and we have been proved analogs of the Sobolev embedding theorem. Also, the notion quasi-operator Laplace has been considered.

Keywords: quasi-norm, Quasi-Banach space, Quasi-Sobolev spaces, Laplace' Quasi-operator, Green' Quasi-operator.

Full text: PDF file (385 kB)
References: PDF file   HTML file
UDC: 517.9
Received: 28.02.2013

Citation: Jawad K. Al-Delfi, “Quasi-Sobolev spaces $l_p^m$”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 107–109

Citation in format AMSBIB
\Bibitem{Al-13}
\by Jawad~K.~Al-Delfi
\paper Quasi-Sobolev spaces $l_p^m$
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2013
\vol 5
\issue 1
\pages 107--109
\mathnet{http://mi.mathnet.ru/vyurm57}


Linking options:
  • http://mi.mathnet.ru/eng/vyurm57
  • http://mi.mathnet.ru/eng/vyurm/v5/i1/p107

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Keller, Dzh. K. Al-Delfi, “Golomorfnye vyrozhdennye gruppy operatorov v kvazibanakhovykh prostranstvakh”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:1 (2015), 20–27  mathnet  elib
    2. A. A. Zamyshlyaeva, D. K. T. Al-Isawi, “On some properties of solutions to one class of evolution Sobolev type mathematical models in quasi-Sobolev spaces”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:4 (2015), 113–119  mathnet  crossref  elib
    3. M. A. Sagadeeva, F. L. Khasan, “Ogranichennye resheniya modeli Barenblatta–Zheltova–Kochinoi v kvazisobolevykh prostranstvakh”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:4 (2015), 138–144  mathnet  crossref  elib
    4. A. A. Zamyshlyaeva, D. K. T. Al-Isavi, “Golomorfnye vyrozhdennye polugruppy operatorov i evolyutsionnye uravneniya sobolevskogo tipa v kvazisobolevykh prostranstvakh posledovatelnostei”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 27–36  mathnet  crossref  elib
    5. M. A. Sagadeeva, F. L. Khasan, “Suschestvovanie invariantnykh podprostranstv i eksponentsialnykh dikhotomii reshenii dinamicheskikh uravnenii sobolevskogo tipa v kvazibanakhovykh prostranstvakh”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 46–53  mathnet  crossref  elib
    6. F. L. Hasan, “Solvability of initial problems for one class of dynamical equations in quasi-Sobolev spaces”, J. Comp. Eng. Math., 2:3 (2015), 34–42  mathnet  crossref  elib
    7. J. K. T. Al-Isawi, “On some properties of solutions to Dzektser mathematical model in quasi-Sobolev spaces”, J. Comp. Eng. Math., 2:4 (2015), 27–36  mathnet  crossref  elib
    8. M. A. Sagadeeva, A. S. Rashid, “Existence of solutions in quasi-Banach spaces for evolutionary Sobolev type equations in relatively radial case”, J. Comp. Eng. Math., 2:2 (2015), 71–81  mathnet  crossref  elib
    9. J. K. T. Al-Isawi, A. A. Zamyshlyaeva, “Computational experiment for one class of evolution mathematical models in quasi-Sobolev spaces”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 9:4 (2016), 141–147  mathnet  crossref  elib
    10. F. L. Hasan, “The bounded solutions on a semiaxis for the linearized Hoff equation in quasi-Sobolev spaces”, J. Comp. Eng. Math., 4:1 (2017), 27–37  mathnet  crossref  mathscinet  elib
    11. N. N. Solovyova, S. A. Zagrebina, “Multipoint initial-final value problem for Hoff equation in quasi-Sobolev spaces”, J. Comp. Eng. Math., 4:2 (2017), 73–79  mathnet  crossref  mathscinet  elib
  • Number of views:
    This page:141
    Full text:55
    References:39

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020