RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2013, Volume 5, Issue 2, Pages 39–44 (Mi vyurm73)  

Mathematics

About extension of homeomorphisms over zero-dimensional homogeneous spaces

S. V. Medvedev

South Ural State University

Abstract: Let $X$ be a zero-dimensional homogeneous space satisfying the first axiom of countability. We prove the theorem about an extension of a homeomorphism $g: A\to B$ to a homeomorphism $f: X\to X$, where $A$ and $B$ are countable disjoint compact subsets of the space $X$. If, additionally, $X$ is a non-pseudocompact space, then the homeomorphism $g$ is extendable to a homeomorphism $f: X\to X\setminus A$.

Keywords: homogeneous space; homeomorphism; first axiom of countability; pseudocompact space.

Full text: PDF file (4507 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 515.126
Received: 30.05.2013

Citation: S. V. Medvedev, “About extension of homeomorphisms over zero-dimensional homogeneous spaces”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:2 (2013), 39–44

Citation in format AMSBIB
\Bibitem{Med13}
\by S.~V.~Medvedev
\paper About extension of homeomorphisms over zero-dimensional homogeneous spaces
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2013
\vol 5
\issue 2
\pages 39--44
\mathnet{http://mi.mathnet.ru/vyurm73}


Linking options:
  • http://mi.mathnet.ru/eng/vyurm73
  • http://mi.mathnet.ru/eng/vyurm/v5/i2/p39

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:75
    Full text:62
    References:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018