RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik YuUrGU. Ser. Mat. Model. Progr., 2014, Volume 7, Issue 2, Pages 29–37 (Mi vyuru127)  

This article is cited in 9 scientific papers (total in 9 papers)

Mathematical Modelling

A Mathematical Study of the Conservation Equation for Two-Phase Mixtures

Yu. M. Kovaleva, E. A. Kovalevab

a South Ural State University, Chelyabinsk, Russian Federation
b Chelyabinsk State University, Chelyabinsk, Russian Federation

Abstract: We study the invariance under the Galilean transformations of the Baer–Nunziato equations for interpenetrating interacting flows which describe the transition from combustion to explosion in two-phase mixtures. We show that the original Baer–Nunziato model is invariant. In addition, we establish the invariance of the kinetic and total energy equations for the components and mixture. But the conservation equations for the total energy of the mixture in the Baer–Nunziato model and in the model of Nigmatulin's group have different behavior. Thus, additional study is required to choose the model describing more adequately the transition from combustion to explosion in two-phase mixtures.

Keywords: mathematical model; invariance; multicomponent mixture.

DOI: https://doi.org/10.14529/mmp140202

Full text: PDF file (381 kB)
References: PDF file   HTML file

UDC: 532.525
MSC: 76N15
Received: 25.12.2013

Citation: Yu. M. Kovalev, E. A. Kovaleva, “A Mathematical Study of the Conservation Equation for Two-Phase Mixtures”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:2 (2014), 29–37

Citation in format AMSBIB
\Bibitem{KovKov14}
\by Yu.~M.~Kovalev, E.~A.~Kovaleva
\paper A Mathematical Study of the Conservation Equation for Two-Phase Mixtures
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2014
\vol 7
\issue 2
\pages 29--37
\mathnet{http://mi.mathnet.ru/vyuru127}
\crossref{https://doi.org/10.14529/mmp140202}


Linking options:
  • http://mi.mathnet.ru/eng/vyuru127
  • http://mi.mathnet.ru/eng/vyuru/v7/i2/p29

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. M. Kovalev, E. E. Pigasov, “Matematicheskaya model gazovzvesi s khimicheskimi prevrascheniyami v priblizhenii parnykh vzaimodeistvii”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:3 (2014), 40–49  mathnet  crossref
    2. Yu. M. Kovalev, “Opredelenie vida sily mezhfaznogo vzaimodeistviya dlya matematicheskoi modeli gazovzvesi s parnymi vzaimodeistviyami”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 6:3 (2014), 23–29  mathnet
    3. D. S. Grischenko, Yu. M. Kovalev, E. A. Kovaleva, “Modifikatsiya metoda krupnykh chastits dlya issledovaniya techenii gazovzvesei”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:2 (2015), 36–42  mathnet  crossref  elib
    4. Yu. M. Kovalev, E. A. Kovaleva, E. E. Pigasov, “Analiz nekotorykh modifikatsii metoda krupnykh chastits na primere issledovaniya techenii gazovzvesei”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:3 (2015), 71–77  mathnet  elib
    5. N. L. Klinacheva, Yu. M. Kovalev, “Oslablenie sfericheskikh udarnykh voln v geterogennykh sredakh”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:4 (2017), 35–45  mathnet  crossref  elib
    6. Yu. M. Kovalev, “Opredelenie vyrazheniya izobaricheskogo koeffitsienta ob'emnogo rasshireniya dlya nekotorykh molekulyarnykh kristallov nitrosoedinenii”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 10:2 (2018), 57–67  mathnet  crossref  elib
    7. N. L. Klinacheva, Yu. M. Kovalev, “Vzaimodeistvie sfericheskikh udarnykh voln s pripoverkhnostnym geterogennym sloem s khimicheski aktivnoi gazovoi fazoi”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11:3 (2018), 62–71  mathnet  crossref  elib
    8. Yu. M. Kovalev, F. G. Magazov, E. S. Shestakovskaya, “Ravnovesnaya matematicheskaya model mnogokomponentnykh geterogennykh sred”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 10:4 (2018), 49–57  mathnet  crossref  elib
    9. F. G. Magazov, E. S. Shestakovskaya, “Matematicheskoe modelirovanie vozmozhnykh mekhanizmov obrazovaniya goryachikh tochek”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11:4 (2018), 154–160  mathnet  crossref  elib
  • Number of views:
    This page:154
    Full text:54
    References:39

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020