RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 2014, том 7, выпуск 3, страницы 116–120 (Mi vyuru151)  

Краткие сообщения

Introducing a power of the operator in direct spectral problems

[Введение степени оператора при решении прямых спектральных задач]

G. A. Zakirova, E. V. Kirillov

South Ural State University, Chelyabinsk, Russian Federation

Аннотация: Резольвентный метод, предложенный еще в 90-х гг В. А. Садовничим и В. В. Дубровским, с успехом применим как в прямых спектральных задачах при вычислении асимптотики собственных чисел возмущенного оператора или формул регуляризованных следов, так и в обратных — при восстановлении потенциала. Однако, применение этого метода вызывает затруднения в тех случаях, когда резольвента невозмущенного оператора оказывается неядерной. Поэтому ряд физических задач, как известно, приходится рассматривать только на интервале. В данной работе приведено обоснование перехода к степени оператора для расширения области применения резольвентного метода. Рассмотрен вопрос о вычислении регуляризованного следа оператора Лапласа на параллелепипеде произвольной размерности. Показано, что для любой фиксированной размерности возможно подобрать нужную степень оператора и вычислить регуляризованный след. Актуальность этих исследований обусловлена необходимостью изучения важных прикладных задач, в частности, в области гидродинамики, радиоэлектроники, теории упругости, квантовой механики и других.

Ключевые слова: регуляризованный след; оператор Лапласа.

DOI: https://doi.org/10.14529/mmp140312

Полный текст: PDF файл (224 kB)
Список литературы: PDF файл   HTML файл

Тип публикации: Статья
MSC: 35P99
Поступила в редакцию: 16.05.2014
Язык публикации: английский

Образец цитирования: G. A. Zakirova, E. V. Kirillov, “Introducing a power of the operator in direct spectral problems”, Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 7:3 (2014), 116–120

Цитирование в формате AMSBIB
\RBibitem{ZakKir14}
\by G.~A.~Zakirova, E.~V.~Kirillov
\paper Introducing a power of the operator in direct spectral problems
\jour Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование
\yr 2014
\vol 7
\issue 3
\pages 116--120
\mathnet{http://mi.mathnet.ru/vyuru151}
\crossref{https://doi.org/10.14529/mmp140312}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/vyuru151
  • http://mi.mathnet.ru/rus/vyuru/v7/i3/p116

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:70
    Полный текст:28
    Литература:13
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019